- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 三角形的内角和定理
- 三角形内角和定理的证明
- 与平行线有关的三角形内角和问题
- 与角平分线有关的三角形内角和问题
- 三角形折叠中的角度问题
- 三角形内角和定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则∠AOB的度数是( )


A.74° | B.84° | C.86° | D.94° |
如图,在△ABC中,∠C=40 ° ,按图中虚线将∠C剪去后,∠1+∠2等于( ).


A.140° | B.210° | C.220° | D.320° |
如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如正三角形就是等边三角形,正四边形就是正方形,如下图,就是一组正多边形,

(1)观察上面每个正多边形中的∠α,填写下表:
(2)根据规律,计算正八边形中的∠α的度数.
(3)是否存在正n边形使得∠α=21°?若存在,请求出n的值,若不存在,请说明理由.

(1)观察上面每个正多边形中的∠α,填写下表:
正多边形边数 | 3 | 4 | 5 | 6 | …… | n |
∠α的度数 | ______° | _____° | ______° | ______° | …… | _____° |
(2)根据规律,计算正八边形中的∠α的度数.
(3)是否存在正n边形使得∠α=21°?若存在,请求出n的值,若不存在,请说明理由.
如图①所示,在三角形纸片
中,
,
,将纸片的一角折叠,使点
落在
内的点
处.
(1)若
,
________.
(2)如图①,若各个角度不确定,试猜想
,
,
之间的数量关系,直接写出结论.
②当点
落在四边形
外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,
,
,
之间又存在什么关系?请说明。

(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的
和是________.






(1)若


(2)如图①,若各个角度不确定,试猜想



②当点






(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的

如图,在△ABC中,∠ABC=52。,∠ACB=68。,CD,BE分别是AB,AC边上的高,BE,CD相交于O点,求∠BOC的度数.
