- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
一天,爸爸带小明到建筑工地玩,看见一个如图所示的人字架,爸爸说:“小明,我考考你,这个人字架的夹角∠1等于120°,你知道∠3比∠2大多少吗?”小明马上得到了正确的答案,他的答案是 °.


(本题满分8分)在七年级下册教科书中,我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?
探究一
(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?
探究二
(2)如图2,在△ABC纸片中剪去△AED,得到四边形BCDE,∠1=115°,则∠2-∠A=_____;
(3)如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?为什么?

探究一
(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?
探究二
(2)如图2,在△ABC纸片中剪去△AED,得到四边形BCDE,∠1=115°,则∠2-∠A=_____;
(3)如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?为什么?

如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.

(1)若∠B=35°,∠ACB=85°,则∠E的度数= ;
(2)当P点在线段AD上运动时,设∠B=α,∠ACB=β(β>α),则∠E= .(用α,β的代数式表示)

(1)若∠B=35°,∠ACB=85°,则∠E的度数= ;
(2)当P点在线段AD上运动时,设∠B=α,∠ACB=β(β>α),则∠E= .(用α,β的代数式表示)
△ABC中,∠ABC=40°,∠ACB=80°,BO、CO分别平分∠ABC,∠ACB,交于O,CI为外角∠ACD的平分线,BO的延长线交CI于I点,记∠BAC=∠1,∠BIC=∠2,则∠1:∠2= (求比值).


如图,已知△ABC,按要求画图、填空:

(1)过点A画线段BC的垂线,垂足为D;
(2)过点D画AB的平行线交AC于点E;
(3)已知∠B=70°,则∠ADE= °.

(1)过点A画线段BC的垂线,垂足为D;
(2)过点D画AB的平行线交AC于点E;
(3)已知∠B=70°,则∠ADE= °.
如图,将△ABC的边AB延长2倍至点A1,边BC延长2倍至点B1,边CA延长2倍至点C1,顺次连结A1、B1、C1,得△A1B1C1,再分别延长△A1B1C1的各边2倍得△A2B2C2,……,依次这样下去,得△AnBnCn,若△ABC的面积为1,则△AnBnCn的面积为 .

