- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知:Rt△ABC中,∠C=90°,∠CAB的平分线与外角∠CBE的平分线相交于点D.

(1)如图1,若CA=CB,则∠D= 度;
(2)如图2,若CA≠CB,求∠D的度数;
(3)如图3,在(2)的条件下,AD与BC相交于点F,过B作BG⊥DF,过D作DH⊥BF,垂足分别为G,H,BG,DH相交于点M.若FG=2,DG=4,求BH的长.

(1)如图1,若CA=CB,则∠D= 度;
(2)如图2,若CA≠CB,求∠D的度数;
(3)如图3,在(2)的条件下,AD与BC相交于点F,过B作BG⊥DF,过D作DH⊥BF,垂足分别为G,H,BG,DH相交于点M.若FG=2,DG=4,求BH的长.
(9分)已知△ABC中,AE平分∠BAC

(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;
(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=
是否成立,并说明理由.

(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;
(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=

已知,四边形ABCD,连接AC,∠ABC=∠BAC=∠DAC=
∠ADC,若DC=2AD=4,则△ABC的面积为_____________.



在某小区的A处有一个凉亭,道路AB、BC、AC两两相交于点A、B、C,并且道路AB与道路BC互相垂直,如图所示.已知A与B之间的距离为20cm,若有两个小朋友在与点B相距10cm的点D处玩耍,玩累了他们分别沿不同的路线D→B→A,D→C→A到凉亭A处喝水休息,已知路线D→B→A与D→C→A路程相等,求AC的长度.


(12分)如图①②,将两个相同三角板的两个直角顶点O重合在一起,如图①②放置.
(1)若∠BOC=60°,如图①求∠AOD的度数;
(2)若∠BOC=70°,如图②求∠AOD的度数;
(3)猜想∠AOD和∠BOC的关系.

(1)若∠BOC=60°,如图①求∠AOD的度数;
(2)若∠BOC=70°,如图②求∠AOD的度数;
(3)猜想∠AOD和∠BOC的关系.
