- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,三条公路把
、
、
三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( )





A.在![]() ![]() |
B.在![]() ![]() |
C.在![]() ![]() |
D.在![]() ![]() |
已知:在△ABC和△DEF中,∠A=40°,∠E+∠F=100°,将△DEF如图摆放,使得∠D的两条边分别经过点B和点

A. (1)当将△DEF如图1摆放时,则∠ABD+∠ACD= 度; (2)当将△DEF如图2摆放时,请求出∠ABD+∠ACD的度数,并说明理由; (3)能否将△DEF摆放到某个位置时,使得BD、CD同时平分∠ABC和∠ACB?直接写出结论 .(填“能”或“不能”) |

如图,在△ABC中,∠B>∠C,AD⊥BC,垂足为D,AE平分∠BAC.
(1)已知∠B=60°,∠C=30°,求∠DAE的度数;
(2)已知∠B=3∠C,求证:∠DAE=∠C.
(1)已知∠B=60°,∠C=30°,求∠DAE的度数;
(2)已知∠B=3∠C,求证:∠DAE=∠C.

如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于
CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=8,则M点到OB的距离为( )



A.4 | B.8 | C.3 | D.4![]() |