- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()


A.(![]() | B.(![]() | C.(![]() | D.(![]() |
如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(−l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=
上,过点C作CE//x轴交双曲线于点E,连接BE,则△BCE的面积为________.


如图,在△ABC中,AE是中线,AD是角平分线,AF是高,填空:
(1)BE= =
(2)∠BAD=
(3)∠AFB= =90°
(4)S△ABC= S△ABE.
(1)BE= =

(2)∠BAD=

(3)∠AFB= =90°
(4)S△ABC= S△ABE.

我们知道:有两条边相等的三角形叫做等腰三角形。类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)请你写出一个等对边四边形的名称;
(2)如图,在△ABC中,点D、E分别在AB、AC上,设CD、BE相交于点O,若∠A=50°,
.请写出图中其余等于50°的角,并猜想图中哪个四边形为等对边四边形(不需证明);
(3)在
中,如果∠A是不等于50°的锐角,点D、E分别在AB、AC上,且
.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.
(1)请你写出一个等对边四边形的名称;
(2)如图,在△ABC中,点D、E分别在AB、AC上,设CD、BE相交于点O,若∠A=50°,

(3)在



如图,四边形ABCD是平行四边形,以点A为圆心、AB的长为半径画弧交AD于点F,再分别以点B,F为圆心、大于
BF的长为半径画弧,两弧交于点M,作射线AM交BC于点E,连接EF.下列结论中不一定成立的是( )



A.BE=EF | B.EF∥CD | C.AE平分∠BEF | D.AB=AE |
如图,四边形ABCD是菱形,∠BAD=120°,点E在射线AC上(不包括点A和点C),过点E的直线GH交直线AD于点G,交直线BC于点H,且GH∥DC,点F在BC的延长线上,CF=AG,连接ED,EF,DF.

(1)如图1,当点E在线段AC上时,
①判断△AEG的形状,并说明理由.
②求证:△DEF是等边三角形.
(2)如图2,当点E在AC的延长线上时,△DEF是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.

(1)如图1,当点E在线段AC上时,
①判断△AEG的形状,并说明理由.
②求证:△DEF是等边三角形.
(2)如图2,当点E在AC的延长线上时,△DEF是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.