- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在等腰直角
中,
,以B为圆心,小于
的长为半径画弧,分别交
,
于点E,F,分别以点E,F为圆心,大于
的长为半径画弧,两弧交于点P,作射线
交
于点O,在射线
上作
,连接
,
.下列说法不正确的是( )














A.![]() | B.![]() | C.![]() | D.若四边形![]() ![]() |
如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.

(1)求证:△ABE≌△CDF;
(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.

(1)求证:△ABE≌△CDF;
(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.
如图1,我们把对角线互相垂直的四边形叫做对垂四边形.
观察发现:如图1,对垂四边形
四边存在数量为:
.
发现应用:(1)如图2,若
,
是
的中线,
,垂足为
,
,
,求
______.
知识应用:(2)如图3,分别以
的直角边
和斜边
为边向外作正方形
和正方形
,连接
,
,
,已知
,
,求
的长.
拓展应用:(3)如图4,在
中,点
、
、
分别是
,
,
的中点,
,
,
,求
的长.
观察发现:如图1,对垂四边形


发现应用:(1)如图2,若








知识应用:(2)如图3,分别以











拓展应用:(3)如图4,在












如图,已知BD是菱形ABCD的一条对角线,请仅用无刻度的直尺,分别按下列要求画图.
(1)如图,点E在AB上,连接DE,在BC上取点F,使
;

(2)如图,
为等腰直角三角形,
,在菱形ABCD内取点F,使四边形BEDF为正方形.
(1)如图,点E在AB上,连接DE,在BC上取点F,使


(2)如图,



如图,点E,F分别在
的边BC,AD上.

(1)若
,求证:四边形AECF是平行四边形;
(2)请在图2中用圆规和直尺画出四边形AECF,使得四边形AECF是菱形.(不写作法,保留作图痕迹)


(1)若

(2)请在图2中用圆规和直尺画出四边形AECF,使得四边形AECF是菱形.(不写作法,保留作图痕迹)
如图,在
中,对角线
为
的中点,经过点
的直线交
于点
,交
于点
,连接
.现在添加一个适当的条件,使四边形
是菱形,下列条件:①
;②
;③
为
的中点.其中正确的有( )
















A.0个 | B.1个 | C.2个 | D.3个 |
如图,
是直线,且
,点
分别在
上(直线
与
不垂直).请用尺规在图中作出矩形
,使得点
在
上.(保留作图痕迹,不写作法,并证明你所作出的图形是矩形)









