- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 平行线的性质
- + 平行线性质的应用
- 根据平行线的性质探究角的关系
- 根据平行线的性质求角的度数
- 平行线的性质在生活中的应用
- 平行线的判定与性质
- 平行线之间的距离
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知
,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE,BE交于点E,∠CBN=120°.将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,则∠BED的度数(用含n的代数式表示)________ 


如图,将图1的长方形ABCD纸片沿EF所在直线折叠得到图2,折叠后DE与BF交于点P,如果∠BPE-∠AEP=80°,则∠PEF的度数是( )


A.55° | B.60° | C.65° | D.70° |
已知:如图,直线
,点C是PQ,MN之间(不在直线PQ,MN上)的一个动点.

(1)若∠1与∠2都是锐角,如图1,请直接写出∠C与∠1∠2之间的数量关系.
(2)若小明把一块三角板(∠A=30°,∠C=90°)如图2放置,点D,E,F是三角板的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数.
(3)将图2中的三角板进行适当转动,如图3,直角顶点C始终在两条平行线之间,点G在线段CD上,连结EG,且有∠CEG=∠CEM,给出下列两个结论:
①
的值不变;
②∠GEN-∠BDF的值不变.
其中只有一个是正确的,你认为哪个是正确的?讲求出不变的值是多少.


(1)若∠1与∠2都是锐角,如图1,请直接写出∠C与∠1∠2之间的数量关系.
(2)若小明把一块三角板(∠A=30°,∠C=90°)如图2放置,点D,E,F是三角板的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数.
(3)将图2中的三角板进行适当转动,如图3,直角顶点C始终在两条平行线之间,点G在线段CD上,连结EG,且有∠CEG=∠CEM,给出下列两个结论:
①

②∠GEN-∠BDF的值不变.
其中只有一个是正确的,你认为哪个是正确的?讲求出不变的值是多少.
一辆汽车在笔直的公路上行驶,第一次左拐
,再在笔直的公路上行驶一段距离后,第二次右拐
,两次拐弯后的行驶方向与原来的行驶方向( )


A.恰好相同 | B.恰好相反 | C.互相垂直 | D.夹角为![]() |
一副直角三角板叠放如图所示,现将含45°角的三角板ADE固定不动,把含30°角的三角板ABC绕顶点A顺时针旋转∠α(α=∠BAD且0°<α<180°),使两块三角板至少有一组边平行.计算出旋转角α,并用符号表示平行的边。

在公路上骑自行车,若第一次向左拐15°,则第二次向右拐15°就能回到原来的行车方向,这是直接根据()
A.同位角相等,两直线平行 | B.两直线平行,同位角相等 |
C.两直线平行,同旁内角互补 | D.平行于同一直线的两直线互相平行 |