如图,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,点D是斜边BC上的一个动点,过点D分别作DE⊥AB于点E,DF⊥AC于点F,点G为四边形DEAF对角线交点,则线段GF的最小值为_______.

如图,正方形
的边长为8,
为
上一点,
,
为
边上的一个动点,分别以
为边在正方形
内部作等边三角形
和等边三角形
.
(1)证明:
;
(2)直线
与
交于点
,点
在运动过程中.
①
的度数是否发生改变?若不变,求出这个角的度数;若改变,说明理由;
②连结
,求
的最小值. 










(1)证明:

(2)直线




①

②连结



如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为_____.

(1)阅读理解:如图1是二环三角形,可得S=∠A1+∠A2+…+∠A6=360°
理由:连接A1A4
∵∠1+∠2+∠A1OA4=180°
∠A5+∠A6+∠A5OA6=180°
又∵∠A1OA4=∠A5OA6
∴∠1+∠2=∠A5+∠A6
∴∠A2+∠3+∠1+∠2+∠4+∠A3=360°
∴∠A2+∠3+∠A5+∠A6+∠4+∠A3=360°
即S=360°
(2)延伸探究:

①如图2是二环四边形,可得S=∠A1+∠A2+…+∠A8=720°,请你加以证明
②如图3是二环五边形,可得S= ,聪明的你,能根据以上的规律直接写出二环n边形(n≥3的整数)中,S= 度.(用含n的代数式表示最后的结果)
理由:连接A1A4
∵∠1+∠2+∠A1OA4=180°
∠A5+∠A6+∠A5OA6=180°
又∵∠A1OA4=∠A5OA6
∴∠1+∠2=∠A5+∠A6
∴∠A2+∠3+∠1+∠2+∠4+∠A3=360°
∴∠A2+∠3+∠A5+∠A6+∠4+∠A3=360°
即S=360°
(2)延伸探究:

①如图2是二环四边形,可得S=∠A1+∠A2+…+∠A8=720°,请你加以证明
②如图3是二环五边形,可得S= ,聪明的你,能根据以上的规律直接写出二环n边形(n≥3的整数)中,S= 度.(用含n的代数式表示最后的结果)

如图,已知所有小正方形的边长都为1,点
、
、
都在格点上,借助网格完成下列各题.
(1)过点
画直线
的垂线,并标出垂足
;
(2)线段______的长度是点
到直线
的距离;
(3)过点
画直线
的平行线交于格点
,求出四边形
的面积.



(1)过点



(2)线段______的长度是点


(3)过点





在Rt△ABC中,∠ACB=90°,AC=3,BC=4.以点C为圆心,r为半径的圆与边AB(边AB为线段)仅有一个公共点,则r的值为( )
A.r≥![]() | B.r=3或r=4 | C.![]() | D.r=![]() |