- 数与式
- 方程与不等式
- 函数
- 平面直角坐标系
- 函数基础知识
- + 一次函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 二次函数
- 反比例函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某人在银行的信用卡存入2万元,每次取出50元,若卡内余额为 y(元),取钱的次数为x.(利息忽略不计)
(1)、写出y与x之间的函数关系式,并求出自变量的取值范围?
(2)、取多少次钱以后,余额为原存款的四分之一?
(1)、写出y与x之间的函数关系式,并求出自变量的取值范围?
(2)、取多少次钱以后,余额为原存款的四分之一?
某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为__ 方.
月用水量 | 不超过12方部分 | 超过12方不超过18吨部分 | 超过18方部分 |
收费标准(元/方) | 2 | 2.5 | 3 |
某商场销售一种西装和领带,西装每套定价1 000元,领带每条定价200元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.
方案一:买一套西装送一条领带;
方案二:西装和领带都按定价的90%付款.
现某客户要到该商场购买西装20套,领带x条(x>20).
(1)若该客户按方案一购买,需付款______元;该客户按方案二购买,需付款____元;(用含x的代数式表示)
(2)若x=30,通过计算说明此时按哪种方案购买较为合算;
(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.
方案一:买一套西装送一条领带;
方案二:西装和领带都按定价的90%付款.
现某客户要到该商场购买西装20套,领带x条(x>20).
(1)若该客户按方案一购买,需付款______元;该客户按方案二购买,需付款____元;(用含x的代数式表示)
(2)若x=30,通过计算说明此时按哪种方案购买较为合算;
(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.
将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度
与注水时间
的函数图象大致为( )




A.![]() | B.![]() | C.![]() | D.![]() |
(1)填写下表,并观察下列两个代数式的值的变化情况.
(2)随着n的值逐渐变大,两个代数式的值如何变化?
(3)估计一下,哪个代数式的值先超过100?
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
5n+6 | | | | | | | | |
n2 | | | | | | | | |
(2)随着n的值逐渐变大,两个代数式的值如何变化?
(3)估计一下,哪个代数式的值先超过100?
甲、乙两地相距720km,一列快车和一列慢车都从甲地驶往乙地,慢车先行驶1h后,快车才开始行驶,已知快车的速度是120km/h,以快车开始行驶计时,设时间为x(h),两车之间的距离为y(km),图中的折线是y与x的函数关系的部分图象.根据图象解决下列问题:
(1)慢车的速度是 km/h,点B的坐标是 .
(2)求线段AB所表示的y与x之间的函数关系式.

(1)慢车的速度是 km/h,点B的坐标是 .
(2)求线段AB所表示的y与x之间的函数关系式.

我市“上品”房地产开发公司于2010年5月份完工一商品房小区,6月初开始销售,其中6月的销售单价为0.7万元/m2,7月的销售单价为0.72万元/m2,且每月销售价格y1(单位:万元/m2)与月份x(6≤x≤11,x为整数)之间满足一次函数关系:每月的销售面积为y2(单位:m2),其中y2=﹣2000x+26000(6≤x≤11,x为整数).
(1)求y1与月份x的函数关系式;
(2)6~11月中,哪一个月的销售额最高?最高销售额为多少万元?
(3)2010年11月时,因会受到即将实行的“国八条”和房产税政策的影响,该公司销售部预计12月份的销售面积会在11月销售面积基础上减少20a%,于是决定将12月份的销售价格在11月的基础上增加a%,该计划顺利完成.为了尽快收回资金,2011年1月公司进行降价促销,该月销售额为(1500+600a)万元.这样12月、1月的销售额共为4618.4万元,请根据以上条件求出a的值为多少?
(1)求y1与月份x的函数关系式;
(2)6~11月中,哪一个月的销售额最高?最高销售额为多少万元?
(3)2010年11月时,因会受到即将实行的“国八条”和房产税政策的影响,该公司销售部预计12月份的销售面积会在11月销售面积基础上减少20a%,于是决定将12月份的销售价格在11月的基础上增加a%,该计划顺利完成.为了尽快收回资金,2011年1月公司进行降价促销,该月销售额为(1500+600a)万元.这样12月、1月的销售额共为4618.4万元,请根据以上条件求出a的值为多少?
甲、乙两车沿同一平直公路由A地匀速行驶(中途不停留),前往终点B地,甲、乙两车之间的距离S(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.下列说法:
①甲、乙两地相距210千米;
②甲速度为60千米/小时;
③乙速度为120千米/小时;
④乙车共行驶3
小时,
其中正确的个数为( )

①甲、乙两地相距210千米;
②甲速度为60千米/小时;
③乙速度为120千米/小时;
④乙车共行驶3

其中正确的个数为( )

A.1个 | B.2个 | C.3个 | D.4个 |
某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解析下列问题:
(1)有几种符合题意的生产方案写出解析过程;
(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?
原料名称 饮料名称 | 甲 | 乙 |
A | 20克 | 40克 |
B | 30克 | 20克 |
(1)有几种符合题意的生产方案写出解析过程;
(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?