一个水槽有进水管和出水管各一个,进水管每分钟进水a升,出水管每分钟出水b升.水槽在开始5分钟内只进水不出水,随后15分钟内既进水又出水,得到时间x(分)与水槽内的水量y(升)之间的函数关系(如图所示).
(1)求a、b的值;
(2)如果在20分钟之后只出水不进水,求这段时间内y关于x的函数解析式及定义域.
当前题号:1 | 题型:解答题 | 难度:0.99
小张骑自行车匀速从甲地到乙地,在途中休息了-段时间后,仍按原速行驶他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示,

(1)小李到达甲地后,再经过   小时小张到达乙地;小张骑自行车的速度是   千米/小时;
(2)请你写出小李距乙地的距离y (千米)与时间x (小时)之间的函数关系(不要求写出定义域);
(3)若小李想在小张休息期间(第4小时和第5小时不算小张休息)与他相遇,则他出发的时间x应在什么范围? (直接写出答案)
当前题号:2 | 题型:解答题 | 难度:0.99
如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系。
(1)B出发时与A相距 千米。
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是    小时。
(3)B出发后   小时与A相遇。
(4)求出A行走的路程S与时间t的函数关系式。
(5)求出当 t≥1.5时B走的路程S与时间t的函数关系式
当前题号:3 | 题型:解答题 | 难度:0.99
某电视台摄制组乘船往返于A码头和B码头进行拍摄,在AB两码头间设置拍摄中心C.在往返过程中,假设船在ABC处均不停留,船离开B码头的距离s(千米)与航行的时间t(小时)之间的函数关系式如图所示.根据图象信息,解答下列问题:
(1)求船从B码头返回A码头时的速度及返回时s关于t的函数表达式.
(2)求水流的速度.
(3)若拍摄中心C设在离A码头12千米处,摄制组在拍摄中心分两组拍摄,其中一组乘橡皮艇漂流到B码头处,另一组同时乘船到达A码头后马上返回,求两摄制组相遇时离拍摄中心C的距离.
当前题号:4 | 题型:解答题 | 难度:0.99
如图,长方形ABCD中,点P沿着边按BCDA方向运动,开始以每秒m个单位匀速运动、a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动,在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.

(1)直接写出长方形的长和宽;
(2)求mab的值;
(3)当P点在AD边上时,直接写出St的函数解析式.
当前题号:5 | 题型:解答题 | 难度:0.99
一条笔直的公路上顺次有A、B、C三地,甲、乙两车同时从B地出发,向A地均速行驶。甲车到达A地后停止,乙车到达A地后停留1小时,然后再调头按原速向C地行驶。若A、B两地相距400千米,在两车行驶过程中,甲、乙两车之间的距离(千米)与乙车行驶时间(小时)之间的函数图象如图所示,则他们出发后经过___________小时相遇.
当前题号:6 | 题型:填空题 | 难度:0.99
甲、乙两队在比赛时,路程y(米)与时间x(分钟)的函数图像如图所示,根据函数图像填空和解答问题:
(1)最先到达终点的是____________队,比另一队领先__________分钟到达.
(2)在比赛过程中,乙队在_____分钟和_____分钟时两次加速.
(3)假设乙队在第一次加速后,始终保持这个速度继续前进,那么甲、乙两队谁先到达终点?请说明理由.
当前题号:7 | 题型:解答题 | 难度:0.99
某班级同学从学校出发去太阳岛研学旅行,一部分乘坐大客车先出发,余下的同学20min后乘坐小轿车沿同一路线出行,大客车中途停车等候5min,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6 km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.

请结合图象解决下面问题:
(1)学校到景点的路程为________km,________;
(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?
(3)小轿车司机到达景点入口时发现本路段限速80 km/h,请你帮助小轿车司机计算折返时是否超速?
当前题号:8 | 题型:解答题 | 难度:0.99
甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是(  )
A.甲车的速度是80km/hB.乙车的速度是60km/h
C.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km
当前题号:9 | 题型:单选题 | 难度:0.99
甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.
(1)a    b    
(2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.
(3)甲、乙两人在什么时间生产的零件总数相差8个?
当前题号:10 | 题型:解答题 | 难度:0.99