为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,已知购买1台甲种设备和2台乙两种设备共需10000元,购买3台甲种设备和1台乙两种设备共需15000元,且甲种设备的安装及运输费用为600元/台,乙种设备的安装及运输费用为800元/台.
(1)购买1台甲、乙两种设备各需多少元?
(2)若购买的费用不超过40000元,安装及运输费用不超过9200元,则有几种购买方案?
当前题号:1 | 题型:解答题 | 难度:0.99
我市在创建全国文明城市过程中,决定购买AB两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.
(1)求购买AB两种树苗每棵各需多少元?
(2)考虑到绿化效果和资金周转,购进A种树苗不能少于48棵,且用于购买这两种树的资金不能超过7500元,若购进这两种树苗共100棵,则有哪几种购买方案?
(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱30元,种好一棵B种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?
当前题号:2 | 题型:解答题 | 难度:0.99
解方程组    
当前题号:3 | 题型:解答题 | 难度:0.99
近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.
(1)求每台A种、B种设备各多少万元?
(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?
当前题号:4 | 题型:解答题 | 难度:0.99
解方程或不等式(组):
(1) 
(2);
当前题号:5 | 题型:解答题 | 难度:0.99
关于x、的方程组的解是非负数,关于的不等式组有解,则满足条件的整数m的和为(  )
A.B.C.D.
当前题号:6 | 题型:单选题 | 难度:0.99
随着气温的升高,空调的需求量大增.某家电超市对每台进价分别为2000元、1700元的两种型号的空调,近两周的销售情况统计如下:
销售时段
销售量
销售收入
型号
型号
第一周
6台
7台
31000元
第二周
8台
11台
45000元
 
(1)求两种型号的空调的销售价;
(2)若该家电超市准备用不多于54000元的资金,采购这两种型号的空调30台,求种型号的空调最多能采购多少台?
(3)在(2)的条件下,该家电超市售完这30台空调能否实现利润不低于15800元的目标?若能,请给出采购方案.若不能,请说明理由.
当前题号:7 | 题型:解答题 | 难度:0.99
随着科技的发展,某快递公司为了提高分拣包裹的速度,使用机器人代替人工进行包裹分拣,若甲机器人工作,乙机器人工作,一共可以分拣700件包裹;若甲机器人工作,乙机器人工作,一共可以分拣650件包裹.
(1)求甲、乙两机器人每小时各分拣多少件包裹;
(2)去年“双十一”期间,快递公司的业务量猛增,为了让甲、乙两机器人每天分拣包裹的总数量不低于2250件,则它们每天至少要一起工作多少小时?
当前题号:8 | 题型:解答题 | 难度:0.99
某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3台
4台
1200元
第二周
5台
6台
1900元
 
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
当前题号:9 | 题型:解答题 | 难度:0.99
定义一种新运算
(1)若a=2,求满足的x、y的解;
(2)若关于x的不等式的解集为x<3,求a的值.
当前题号:10 | 题型:解答题 | 难度:0.99