- 数与式
- 方程与不等式
- 一元一次方程
- + 二元一次方程组
- 二元一次方程(组)的相关概念
- 解二元一次方程组
- 同解方程组
- 三元一次方程组
- 一元二次方程
- 分式方程
- 不等式与不等式组
- 无理方程
- 二元二次方程组
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某商店分两次购进
、
两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:
(1)求
、
两种商品每件的进价分别是多少元?
(2)商场决定
商品以每件50元出售,
商品以每件
元出售.为满足市场需求,需购进
、
两种商品共
件,且
商品的数量不少于
商品数量的
倍,请你求出获利最大的进货方案,并确定最大利润.


| 购进数量(件) | 购进所需费用 (元) | |
A | B | ||
第一次 | 20 | 50 | 4100 |
第二次 | 30 | 40 | 3700 |
(1)求


(2)商场决定









某建设工地一个工程有大量的沙石需要运输.建设公司车队有载重量为8吨和10吨的卡车共14辆,全部车辆一次能运输128吨沙石.
(1)求建设公司车队载重量为8吨和10吨的卡车各有多少辆?
(2)随着工程的进展,车队需要一次运输沙石超过190吨,为了完成任务,准备新增购这两种卡车共7辆,车队最多新购买载重量为8吨的卡车多少辆?
(1)求建设公司车队载重量为8吨和10吨的卡车各有多少辆?
(2)随着工程的进展,车队需要一次运输沙石超过190吨,为了完成任务,准备新增购这两种卡车共7辆,车队最多新购买载重量为8吨的卡车多少辆?
现有190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子?
“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款386元,这两种商品定价之和为500元,问:这两种商品的定价分别为多少元?
甲、乙两人在东西方向的公路上行走,甲在乙西边300米,若甲、乙两人同时向东走30分钟后,甲正好追上乙;若甲、乙两人同时相向而行,2分钟相遇.问甲、乙两人的速度各是多少?
某城市规定:出租车起步价允许行使的最远路程为3千米,超过3千米的部分按每千米另行收费,甲说:“我乘这种出租车走了11千米,付了17元”;乙说:“我乘这种出租车走了23千米,付了35元”.请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?
学校组织各班开展“阳光体育”活动,某班体育委员第一次到时商店购买了5个毽子和8根跳绳,花费34元,第二次又去购买了3个毽子和4根跳绳,花费18元,求每个毽子和每个跳绳各多少元?
宏远商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:
(1)已知一批商品有A、B两种型号,体积一共是20m3,质量一共是10.5吨,求A、B两种型号商品各有几件?
(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:
①按车收费:每辆车运输货物到目的地收费600元;
②按吨收费:每吨货物运输到目的地收费200元.
要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元?
| 体积(m3/件) | 质量(吨/件) |
A型商品 | 0.8 | 0.5 |
B型商品 | 2 | 1 |
(1)已知一批商品有A、B两种型号,体积一共是20m3,质量一共是10.5吨,求A、B两种型号商品各有几件?
(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:
①按车收费:每辆车运输货物到目的地收费600元;
②按吨收费:每吨货物运输到目的地收费200元.
要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元?