- 数与式
- 方程与不等式
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- + 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,将一条数轴在原点O和点B处各折一下,得到一条 “折线数轴” .图中点A表示-11,点B表示10,点C表示18,我们称点A和点C在数轴上相距29个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.
问:(1)动点P从点A运动至C点需要多少时间?
(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;
(3)求当t为何值时,P、B两点在数轴上相距的长度与Q、O两点在数轴上相距的长度相等.
问:(1)动点P从点A运动至C点需要多少时间?
(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;
(3)求当t为何值时,P、B两点在数轴上相距的长度与Q、O两点在数轴上相距的长度相等.

一种商品按销售量分三部分制定销售单价,如下表:
(1)若买100件花 元,买300件花 元;买380件花 元;
(2)小明买这种商品花了568元,列方程求购买这种商品多少件?
(3)若小明花了n元(n>260),恰好购买0.45n件这种商品,求n的值.
销售量 | 单价 |
不超过100件部分 | 2.6元/件 |
超过100件不超过300件部分 | 2.2元/件 |
超过300件部分 | 2元/件 |
(1)若买100件花 元,买300件花 元;买380件花 元;
(2)小明买这种商品花了568元,列方程求购买这种商品多少件?
(3)若小明花了n元(n>260),恰好购买0.45n件这种商品,求n的值.
学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:

(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示).
(2)分别从正面、左面、上面三个方向看这些碟子,看到的形状图如图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.
碟子的个数 | 1 | 2 | 3 | 4 | … |
碟子的高度(单位:cm) | 2 | 2+1.5 | 2+3 | 2+4.5 | … |

(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示).
(2)分别从正面、左面、上面三个方向看这些碟子,看到的形状图如图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.
某厂接到遵义市一所中学的冬季校服订做任务,计划用A、B两台大型设备进行加工.如果单独用A型设备需要90天做完,如果单独用B型设备需要60天做完,为了同学们能及时领到冬季校服,工厂决定由两台设备同时赶制.
(1)两台设备同时加工,共需多少天才能完成?
(2)若两台设备同时加工30天后,B型设备出了故障,暂时不能工作,此时离发冬季校服时间还有13天.如果由A型设备单独完成剩下的任务,会不会影响学校发校服的时间?请通过计算说明理由.
(1)两台设备同时加工,共需多少天才能完成?
(2)若两台设备同时加工30天后,B型设备出了故障,暂时不能工作,此时离发冬季校服时间还有13天.如果由A型设备单独完成剩下的任务,会不会影响学校发校服的时间?请通过计算说明理由.
已知,如图A、B分别为数轴上的两点,A点对应的数为-20,B点对应的数为80.

(1)请写出AB的中点M对应的数.
(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,
①你知道经过几秒两只电子蚂蚁相遇?
②点C对应的数是多少?
③经过多长时间两只电子蚂蚁在数轴上相距15个单位长度?

(1)请写出AB的中点M对应的数.
(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,
①你知道经过几秒两只电子蚂蚁相遇?
②点C对应的数是多少?
③经过多长时间两只电子蚂蚁在数轴上相距15个单位长度?
“大湖名城、悦读合肥”.在合肥市第四届全民阅读活动中,某校举办了读书节活动,21名志愿者参与整理一批图书,每人每小时能登记录入20本或摆放120本书籍,为使每小时登记录入的书籍正好被及时摆放,设x名志愿者参与登记录入,其余志愿者参与摆放,则所列的方程是_______________________.
悦悦同学周末和爸爸一起到农村参加献爱心志愿者活动,该村的李大爷正在准备用篱笆修建一个长方形鸡舍栅栏,栅栏一面靠墙(墙面长度不限),三面用篱笆,篱笆总长60米,篱笆围成的长方形鸡舍的长比宽多6米,他提出了几个问题想让悦悦帮忙解决,请你用所学的知识和悦悦一起来思考吧!(篱笆的占地面积忽略不计)
(1)如果长方形鸡舍的长与墙为对面,长方形鸡舍的面积是多少;
(2)如果要在墙的对面留一个3米宽的门(门不使用篱笆),那么长方形鸡舍的面积又是多少.
(1)如果长方形鸡舍的长与墙为对面,长方形鸡舍的面积是多少;
(2)如果要在墙的对面留一个3米宽的门(门不使用篱笆),那么长方形鸡舍的面积又是多少.
在等式“2×( )-3×( )= -15”的括号中分别填入一个数,使这两个数满足:互为相反数.则这两个数依次是______,____________.