- 数与式
- 方程与不等式
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- + 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
下图的数阵由88个偶数排成.现用一个如图所示的平行四边形框可以框出四个数;
①图中平行四边形框内的四个数有什么关系?
②在数阵中任意作一类似(1)中的平行四边形框,设其中左上角的一个数是
,那么其他三个数怎样表示?
③在这个数阵的平行四边形框内,是否存在和为288的四个数?若存在,求出这四个数;不存在,说明理由.

①图中平行四边形框内的四个数有什么关系?
②在数阵中任意作一类似(1)中的平行四边形框,设其中左上角的一个数是

③在这个数阵的平行四边形框内,是否存在和为288的四个数?若存在,求出这四个数;不存在,说明理由.
小明是个爱动脑筋的同学,在发现教材中的用方框在日历中移动的规律后,突发奇想,将连续的得数2,4,6,8,…,排成如图形式:并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:
(1)请你选择十字框中你喜欢的任意位置的一个数,将其设为x,并用含x的代数式表示十字框中五个数的和.
(2)若将十字框上下左右移动,可框住另外的五个数,试间:十字框能否框住和等于2015的五个数,如能,请求出这五个数;如不能,说明理由.
(1)请你选择十字框中你喜欢的任意位置的一个数,将其设为x,并用含x的代数式表示十字框中五个数的和.
(2)若将十字框上下左右移动,可框住另外的五个数,试间:十字框能否框住和等于2015的五个数,如能,请求出这五个数;如不能,说明理由.

探索规律:将连续的偶2,4,6,8,…,排成如表:

(1)请你求出十字框中的五个数的和;
(2)设中间的数为x,请你用含x的式子表示十字框中的五个数的和;
(3)若将十字框上下左右移动,可框住另外的五个数,这五个数的和能等于2018吗?如能,写出这五个数,如不能,请说明理由.

(1)请你求出十字框中的五个数的和;
(2)设中间的数为x,请你用含x的式子表示十字框中的五个数的和;
(3)若将十字框上下左右移动,可框住另外的五个数,这五个数的和能等于2018吗?如能,写出这五个数,如不能,请说明理由.
如图,在一次数学探究活动中,小丽同学提出了一个“猜数字”问题.若列一元一次方程解决这个问题,则所列方程正确的是( )


A.2x+3x=44 | B.(2+x)+3x=44 |
C.20x+3x=44 | D.(20+x)+3x=44 |