- 数与式
- 方程与不等式
- 从算式到方程
- 解一元一次方程
- + 实际问题与一元一次方程
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.
(1)如图2,经过t秒后,OP恰好平分∠BOC.
①求t的值;
②此时OQ是否平分∠AOC?请说明理由;
(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;
(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).
(1)如图2,经过t秒后,OP恰好平分∠BOC.
①求t的值;
②此时OQ是否平分∠AOC?请说明理由;
(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;
(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).

某车间每天能制作甲种零件500只,或者制作乙种零件250只,甲、乙两种零件各一只配成一套产品,现在要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?
一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了几天?(请用方程来解决问题)
将连续的奇数1,3,5,7,9,…,2019,排成如图所示的数阵.十字框能上下左右移动,可框住5个数.

(1)如图,若十字框中间的数为25,这5个数的和是多少?
(2)设十字框中间的数为
,用式子表示另外4个数.
(3)框住的5个数的和能否等于2020,请说明理由.
(4)框住的5个数的和最大是多少?(给出结果,不说理由.)

(1)如图,若十字框中间的数为25,这5个数的和是多少?
(2)设十字框中间的数为

(3)框住的5个数的和能否等于2020,请说明理由.
(4)框住的5个数的和最大是多少?(给出结果,不说理由.)
甲、乙两地相距
,一部分为上坡路,其余全为下坡路.一人骑车往返于甲、乙两地之间,上坡时速度为
,下坡时速度为
.若此人由甲地到乙地比由乙地到甲地多用
.画出示意图,求从甲地到乙地上坡的路程.




一个两位数的十位数字与个位数字之和为10,如果把这个两位数加上36,所得新数恰好成为原数个位数字与十位数字对调后组成的两位数,则这个两位数是_____.
某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了5个参赛者的得分情况.在此次竞赛中,有一位参赛者答对15道题,答错5道题,则他的得分是___.
参赛 | 答对题数 | 答错题数 | 得分 |
A | 19 | 1 | 112 |
B | 18 | 2 | 104 |
C | 17 | 3 | 96 |
D | 12 | 8 | 56 |
E | 10 | 10 | 40 |
某工厂加强节能措施,去年第四季度与前三季度相比,月平均用电量减少
(千瓦·时),全年用电15万
.这个工厂去年前三季度每月平均用电是多少?


甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案;在甲超市累计购买商品超出200元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出100元之后,超出部分按原价8.5折优惠,设顾客购物的原费用是x元(x>200).
(1)请用含x的代数式分别表示顾客在两家超市购物所付的实际费用;
(2)李明慧准备购买300元的商品,你认为他应该去哪家超市?请说明理由;
(3)计算一下,李明慧购买多少元的商品时,到两家超市购物所付的费用一样?
(1)请用含x的代数式分别表示顾客在两家超市购物所付的实际费用;
(2)李明慧准备购买300元的商品,你认为他应该去哪家超市?请说明理由;
(3)计算一下,李明慧购买多少元的商品时,到两家超市购物所付的费用一样?