- 数与式
- 方程与不等式
- 从算式到方程
- 解一元一次方程
- + 实际问题与一元一次方程
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某商店同时卖出两件衣服,每件135元,若按成本计,其中一件盈利25%,另一件亏损25%,那么这两件衣服卖出后,商店( )
A.不亏不赔 | B.赚9元 | C.赔18元 | D.赚18元 |
已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包?( )
A.39 | B.40 | C.41 | D.42 |
父子俩每天都去同一所学校上学,父亲是老师,儿子是学生.父亲从家到学校要走30分钟,儿子走这段路只需20分钟,若父亲比儿子早5分钟动身,则儿子需要多长时间才能追上父亲?
我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是_____.
某校组建了66人的合唱队和14人的舞蹈队,根据实际需要,从合唱队中抽调了部分同学参加舞蹈队,使合唱队的人数恰好是舞蹈队人数的3倍,设从合唱队中抽调了x人参加舞蹈队,则可列方程为( )
A.3(66﹣x)=14+x | B.66﹣x=3(14+x) |
C.66﹣3x=14+x | D.66+x=3(14﹣x) |
列方程解应用题:
油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?
油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?

双十一期间,某超市搞活动,推出如下优惠方案:
①一次性购物不超过100元不享受优惠;
②一次性购物超过100元但不超过300元一律九折;
③一次性购物超过300元一律八折.
活动期间,小英两次在此超市购物,购买A、B两种商品各一件,分别付款80元、252元.如果小英一次性购买A、B两种商品各一件,那么可以省多少钱?
①一次性购物不超过100元不享受优惠;
②一次性购物超过100元但不超过300元一律九折;
③一次性购物超过300元一律八折.
活动期间,小英两次在此超市购物,购买A、B两种商品各一件,分别付款80元、252元.如果小英一次性购买A、B两种商品各一件,那么可以省多少钱?
随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次打7折,现售价为b元,则原售价为( )元.
A.![]() | B.![]() | C.![]() | D.![]() |
根据下面给出的数轴,解答下面的问题:

(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数A: B: ;
(2)观察数轴,与点A的距离为
的点表示的数是: ;
(3)若将数轴折叠,使得
点与0表示的点重合,则B点与数 表示的点重合;
(4)若数轴上M、N两点之间的距离为2019(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则
、
两点表示的数分别是:M: ,N: .

(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数A: B: ;
(2)观察数轴,与点A的距离为

(3)若将数轴折叠,使得

(4)若数轴上M、N两点之间的距离为2019(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则

