- 数与式
- 方程与不等式
- 从算式到方程
- 解一元一次方程
- + 实际问题与一元一次方程
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某单位计划元旦组织员工到某地旅游,A、B两旅行社的服务质量相同,且到两地的旅游价格都是每人300元.已知A旅行社表示可给与每人七五折优惠,B旅行社可免去一人费用,其余八五折优惠.当该单位旅游人数为多少时,支付A、B两旅行社的总费用相同?
《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,是当时世界上最简练有效的应用数学.书中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?
2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议.某厂准备生产甲、乙、丙三种商品共611万件销往“一带一路”沿线国家和地区,已知甲种商品比乙种商品多25万件,比丙种商品少36万件,则甲种商品有几万件?
2017年绍兴国际马拉松赛,林华报名参加了7公里小马拉松赛,前两公里是起步阶段,第2公里比第1公里快1分钟,第3公里至第5公里是途中跑阶段,每公里比前一公里快20秒,第6公里至第7公里是冲刺阶段,每公里比前一公里快45秒.已知林华的比赛成绩是47分22秒,则他在第4公里所花的时间为( )
A.7分11秒 | B.6分51秒 | C.6分31秒 | D.6分11秒 |
某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?
小明早晨上学时,每小时走5千米,中午放学沿原路回家时,每小时走4千米,结果回家所用的时间比上学所用的时间多15分钟,问小明家离学校多远?设小明家离学校有x千米,那么所列方程是( )
A.![]() | B.![]() | C.![]() | D.![]() |
书店举行购书优惠活动:
①一次性购书不超过100元,不享受打折优惠;
②一次性购书超过100元但不超过200元,一律按原价打九折;
③一次性购书超过200元,一律按原价打七折.
小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_________.
①一次性购书不超过100元,不享受打折优惠;
②一次性购书超过100元但不超过200元,一律按原价打九折;
③一次性购书超过200元,一律按原价打七折.
小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_________.
为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元。
(1)今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A,B两种款型的单车共100辆,总价值36800元,试问本次试点投放的A型车与B型车各多少辆?
(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开,按照试点投放中A,B两车型的数量比进行投放.且投资总价值达到184万元,请问投放后城区有A型车与B型车各多少辆?
(1)今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A,B两种款型的单车共100辆,总价值36800元,试问本次试点投放的A型车与B型车各多少辆?
(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开,按照试点投放中A,B两车型的数量比进行投放.且投资总价值达到184万元,请问投放后城区有A型车与B型车各多少辆?