如图,正方形
的边长为
,点
在
边上,四边形
也是正方形,它的边长为
(
>
)连结AF、CF、AC,若a+b=10,ab=20,求阴影部分的面积.










一个大矩形按如图方式分割成四个小矩形,且只有标号为③和④的两个小矩形形状完全相同,若要求出标号为①和②的矩形的周长差,只要知道下列哪条线段的长度( )


A.BA | B.AD | C.DC | D.CB |
如图,在正方形
中,
,点E,F分别在
,
上,
,
,
相交于点








A.若图中阴影部分的面积与正方形![]() ![]() ![]() |

如图,矩形ABCD的周长是20cm,以AB,AD为边向外分别作正方形ABEF和正方形ADGH,如果正方形ABEF和正方形ADCH的面积之和为68cm2,求矩形ABCD的面积.

如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点
A.![]() (1)求 ![]() (2)若CE=1,H为BF的中点时,求HG的长度; (3)若图中阴影部分的面积与正方形ABCD的面积之比为2:3,求△BCG的周长. |
我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)所示).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成的记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若EF=4,则S1+S2+S3的值是( )


A.32 | B.38 | C.48 | D.80 |
若 x 满足 (9−x)(x−4)=4, 求 (4−x)2+(x−9)2 的值.
设 9−x=a,x−4=b, 则 (9−x)(x−4)=ab=4,a+b=(9−x)+(x−4)=5 ,
∴(9−x)2+(x−4)2=a2+b2=(a+b)2−2ab=52−2×4=13
请仿照上面的方法求解下面问题:
(1)若 x 满足 (5−x)(x−2)=2, 求 (5−x)2+(x−2)2 的值
(2)已知正方形 ABCD 的边长为 x , E , F 分别是 AD 、 DC 上的点,且 AE=1 , CF=3 ,长方形 EMFD 的面积是 48 ,分别以 MF 、 DF 作正方形,求阴影部分的面积.
设 9−x=a,x−4=b, 则 (9−x)(x−4)=ab=4,a+b=(9−x)+(x−4)=5 ,
∴(9−x)2+(x−4)2=a2+b2=(a+b)2−2ab=52−2×4=13
请仿照上面的方法求解下面问题:
(1)若 x 满足 (5−x)(x−2)=2, 求 (5−x)2+(x−2)2 的值
(2)已知正方形 ABCD 的边长为 x , E , F 分别是 AD 、 DC 上的点,且 AE=1 , CF=3 ,长方形 EMFD 的面积是 48 ,分别以 MF 、 DF 作正方形,求阴影部分的面积.

在长方形纸片ABCD中,AB=m,AD=n,将两张边长分别为6和4的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.

(1)在图1中,EF=___,BF=____;(用含m的式子表示)
(2)请用含m、n的式子表示图1,图2中的S1,S2,若m-n=2,请问S2-S1的值为多少?

(1)在图1中,EF=___,BF=____;(用含m的式子表示)
(2)请用含m、n的式子表示图1,图2中的S1,S2,若m-n=2,请问S2-S1的值为多少?