把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.
(1)选择题:图1是一个长2a、宽2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形.然后,按图2那样拼成一个(中间空的)正方形,则中间空的部分面积是( )


(1)选择题:图1是一个长2a、宽2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形.然后,按图2那样拼成一个(中间空的)正方形,则中间空的部分面积是( )
A.2ab | B.(a+b)2 | C.(a﹣b)2 | D.a2﹣b2 (2)如图3,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的方法计算这个图形的面积.据此,你能发现什么结论,请直接写出来: (3)如图4,是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连接BD和B | E.若两个正方形的边长满足a+b=10,ab=20,求阴影部分的面积. |


下列计算中,正确的是( )
A.x3•x2=x4 | B.(x+y)(x﹣y)=x2+y2 |
C.3x3y2÷xy2=3x4 | D.x(x﹣2)=﹣2x+x2 |
在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()


A.(a+b)2=a2+2ab+b2 |
B.(a-b)2=a2-2ab+b2 |
C.a2-b2=(a+b)(a-b) |
D.(a+2b)(a-b)=a2+ab-2b2 |