- 数与式
- 无理数
- 实数的性质
- + 实数的运算
- 实数的混合运算
- 程序设计与实数运算
- 新定义下的实数运算
- 实数运算的实际应用
- 与实数运算相关的规律题
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为( )
A.1985 | B.-1985 | C.2019 | D.-2019 |
将一列有理数
,
,
,
,
,
,…按如图所示有序地排列.根据图中的排列规律可知,“峰
”中峰顶的位置时有理数
,那么“峰
”中峰顶的位置时有理数______,
应排在
,
,
,
,
中_______的位置. 
















用“⊗”规定一种新运算:对于任意有理数a和b,规定a⊗b=ab²+2ab+a.如:1⊗3=1×3²+2×1×3+1=16
(1)求3⊗(﹣1)的值;
(2)若(a+1)⊗2=36,求a的值;
(3)若m=2⊗x,n=(
x)⊗3(其中x为有理数),试比较m、n的大小.
(1)求3⊗(﹣1)的值;
(2)若(a+1)⊗2=36,求a的值;
(3)若m=2⊗x,n=(

对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.
(1)求2⊗(-5)的值;
(2)若x⊗(-y)=2,且2y⊗x=-1,求x+y的值.
(1)求2⊗(-5)的值;
(2)若x⊗(-y)=2,且2y⊗x=-1,求x+y的值.
阅读下列材料:
将一个多位自然数分解为个位与个位之前的数,让个位之前的数减去个位数的两倍,若所得之差能被7整除,则原多位自然数一定能被7整除.也称这个数为“要塞数”.例如:将数1078分解为8和107,107﹣8×2=91,因为91能被7整除,所以1078能被7整除,就称1078为“要塞数”.
完成下列问题:
(1)若一个三位自然数是“要塞数”,且个位数字和百位数字都是7,则这个三位自然数位 ;
(2)若一个四位自然数M是“要塞数”,设M的个位数字为x,十位数字为y,且个位数字与百位数字的和为13,十位数字与千位数字的和也为13,记F(M)=|x﹣y|,求F(M)的最大值.
将一个多位自然数分解为个位与个位之前的数,让个位之前的数减去个位数的两倍,若所得之差能被7整除,则原多位自然数一定能被7整除.也称这个数为“要塞数”.例如:将数1078分解为8和107,107﹣8×2=91,因为91能被7整除,所以1078能被7整除,就称1078为“要塞数”.
完成下列问题:
(1)若一个三位自然数是“要塞数”,且个位数字和百位数字都是7,则这个三位自然数位 ;
(2)若一个四位自然数M是“要塞数”,设M的个位数字为x,十位数字为y,且个位数字与百位数字的和为13,十位数字与千位数字的和也为13,记F(M)=|x﹣y|,求F(M)的最大值.