- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 产生均匀随机数的变换
- 设计计算机模拟实验
- 用随机模拟法估算几何概率
- + 随机模拟的其他应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某实验单次成功的概率为0.8,记事件A为“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”,现采用随机模拟的方法估计事件4的概率:先由计算机给出0~9十个整数值的随机数,指定0,1表示单次实验失败,2,3,4,5,6,7,8,9表示单次实验成功,以3个随机数为组,代表3次实验的结果经随机模拟产生了20组随机数,如下表:
根据以上方法及数据,估计事件A的概率为( )
752 | 029 | 714 | 985 | 034 |
437 | 863 | 694 | 141 | 469 |
037 | 623 | 804 | 601 | 366 |
959 | 742 | 761 | 428 | 261 |
根据以上方法及数据,估计事件A的概率为( )
A.0.384 | B.0.65 | C.0.9 | D.0.904 |
下图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为( )


A.8 | B.9 | C.10 | D.12 |
某同学为了模拟测定圆周率,设计如下方案;点
满足不等式组
,向圆
内均匀撒
粒黄豆,已知落在不等式组所表示的区域内的黄豆数是
,则圆周率
为( )






A.![]() | B.![]() | C.![]() | D.![]() |
矩形长为8,宽为3,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆为96颗,以此试验数据为依据可以估计椭圆的面积为( )
A.7.68 | B.8.68 | C.16.32 | D.17.32 |