- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 实际问题中的组合计数问题
- 代数中的组合计数问题
- 几何组合计数问题
- 分组分配问题
- x+y+z=n的整数解的个数
- 其他组合计数模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个小孩的现象普遍存在,某城市关系要好的
四个家庭各有两个小孩共8人,准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中
户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有


A.![]() | B.![]() | C.![]() | D.![]() |
为丰富少儿文体活动,某学校从篮球,足球,排球,橄榄球中任选2种球给甲班学生使用,剩余的2种球给乙班学生使用,则篮球和足球不在同一班的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
有7个灯泡排成一排,现要求至少点亮其中的3个灯泡,且相邻的灯泡不能同时点亮,则不同的点亮方法有( )
A.11种 | B.21种 | C.120种 | D.126种 |
从5名男生和4名女生中选出4人去参加座谈会,问:
(1)如果4人中男生和女生各选2人,有多少种选法?
(2)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?
(3)如果4人中必须既有男生又有女生,有多少种选法?
(1)如果4人中男生和女生各选2人,有多少种选法?
(2)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?
(3)如果4人中必须既有男生又有女生,有多少种选法?
有30个完全相同的苹果,分给4个不同的小朋友,每个小朋友至少分得4个苹果,问有多少种不同的分配方案?( )
A.680 | B.816 | C.1360 | D.1456 |
从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入
选的不同选法的种数为 ( )
选的不同选法的种数为 ( )
A.85 | B.56 |
C.49 | D.28 |
现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( )
A.232 | B.252 | C.472 | D.484 |
某校高三年级要从5名男生和2名女生中任选3名代表参加数学竞赛,则男生甲和女生乙至少有一个被选中的方法数为__________.(用数字作答)
马路上有编号为1,2,3,4…,9的9只路灯,为节约用电,现要求把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉两端的路灯,则满足条件的关灯方法有( )
A.7种 | B.8种 | C.9种 | D.10种 |