- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 加法原理与乘法原理
- 排列
- + 组合
- 组合与组合数公式
- 组合应用题
- 二项式定理
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
6名同学参加4项社会实践活动,要求每项活动至少1人,则不同的参加方式共有( )
A.2640种 | B.1560种 | C.1080种 | D.480种 |
某校在“数学联赛”考试后选取了6名教师参加阅卷,试卷共4道解答题,要求将这6名教师分成4组,每组改一道解答题,其中2组各有2名教师,另外2组各有1名教师,则不同的分配方案的种数是( )
A.216 | B.420 | C.720 | D.1080 |
在
元数集
中,设
,若
的非空子集
满足
,则称
是集合
的一个“平均子集”,并记数集
的
元“平均子集”的个数为
.已知集合
,
,则下列说法错误的是( )













A.![]() | B.![]() | C.![]() | D.![]() |
第十一届全国少数民族传统体育运动会在河南郑州举行,某项目比赛期间需要安排3名志愿者完成5项工作,每人至少完成一项,每项工作由一人完成,则不同的安排方式共有多少种
A.60 | B.90 | C.120 | D.150 |
某年数学竞赛邀请了一位来自
星球的选手参加填空题比赛,共10道题目,这位选手做题有一个古怪的习惯:先从最后一题(第10题)开始往前看,凡是遇到会的题目就作答,遇到不会的题目先跳过(允许跳过所有的题目),一直看到第1题,然后从第1题开始往后看,凡是遇到先前未答的题目就随便写个答案,遇到先前已答得题目则跳过(例如,他可以按照9、8、7、4、3、2、1、5、6、10的次序答题),这样所有题目均有作答,则这位选手可能的答题次序有______种.
