- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 全排列问题
- 元素(位置)有限制的排列问题
- + 相邻问题的排列问题
- 不相邻排列问题
- 其他排列模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
6个人按下列要求站一横排,分别有多少种不同的站法?
(1)甲不站两端;
(2)甲、乙必须相邻;
(3)甲、乙不相邻;
(4)甲、乙之间间隔两人;
(5)甲、乙站在两端;
(6)甲不站左端,乙不站右端.
(1)甲不站两端;
(2)甲、乙必须相邻;
(3)甲、乙不相邻;
(4)甲、乙之间间隔两人;
(5)甲、乙站在两端;
(6)甲不站左端,乙不站右端.
在航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有
A.24种 | B.48种 | C.96种 | D.144种 |
某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种.
有2名男生、3名女生,在下列不同条件下,求不同的排列方法总数.
(1)全体站成一排,甲不站排头也不站排尾;
(2)全体站成一排,女生必须站在一起;
(3)全体站成一排,男生互不相邻.
(1)全体站成一排,甲不站排头也不站排尾;
(2)全体站成一排,女生必须站在一起;
(3)全体站成一排,男生互不相邻.
有3名女生和5名男生,按照下列条件排队,求各有多少种不同的排队方法?
名女生排在一起;
名女生次序一定,但不一定相邻;
名女生不站在排头和排尾,也互不相邻;
每两名女生之间至少有两名男生;
名女生中,A,B要相邻,A,C不相邻.





元旦晚会期间,高三二班的学生准备了6 个参赛节目,其中有 2 个舞蹈节目,2 个小品节目,2个歌曲节目,要求歌曲节目一定排在首尾,另外2个舞蹈节目一定要排在一起,则这 6 个节目的不同编排种数为
A.48 | B.36 | C.24 | D.12 |
4男3女站成一排,求满足下列条件的排法共有多少种?
任何两名女生都不相邻,有多少种排法?
男甲不在首位,男乙不在末位,有多少种排法?
男生甲、乙、丙顺序一定,有多少种排法?
男甲在男乙的左边
不一定相邻
有多少种不同的排法?






我校2018年高考再创佳绩,共有13人被清华北大录取.现需要他们13人站成一排合影留念,那么甲乙两人相邻的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |