- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 排列的意义理解
- 排列数的计算
- 用排列数公式证明
- 排列数方程和不等式
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
每年的9月初是高校新生到校报道的时间,此时学生会将组织师兄师姐做好迎接接待工作,若某学院只有3位师兄在迎新现场,突然来了4位新生,要求一次性派发完迎新指引工作(可以有1位师兄接待2位新生),则安排方案有______ 种.(用数字作答)
一用户在打电话时忘记了最后3个号码,只记得最后3个数两两不同,且都大于5.于是他随机拨最后3个数(两两不同),设他拨到正确号码的次数为X,随机变量X的可能值有_____个.
某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( )
A.48 | B.72 | C.84 | D.168 |
定义“规范01数列”
如下:
共有
项,其中
项为0,
项为1,且对任意
,
中0的个数不少于1的个数.若
,则不同的“规范01数列”共有____ 个.








六安一中高三教学楼共五层,甲、乙、丙、丁四人走进该教学楼2~5层的某一层楼上课,则满足且仅有一人上5楼上课,且甲不在2楼上课的所有可能的情况有( )种
A.27 | B.81 | C.54 | D.108 |
某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?
有
位同学按照身高由低到高站成一列,现在需要在该队列中插入另外
位同学,但是不能改变原来的
位同学的顺序,则所有排列的种数为( )



A.![]() | B.![]() | C.![]() | D.![]() |
给出下列问题:
①有10个车站,共需要准备多少种车票?
②有10个车站,共有多少中不同的票价?
③平面内有10个点,共可作出多少条不同的有向线段?
④有10个同学,假期约定每两人通电话一次,共需通话多少次?
⑤从10个同学中选出2名分别参加数学和物理竞赛,有多少中选派方法?
以上问题中,属于排列问题的是_________(填写问题序号).
①有10个车站,共需要准备多少种车票?
②有10个车站,共有多少中不同的票价?
③平面内有10个点,共可作出多少条不同的有向线段?
④有10个同学,假期约定每两人通电话一次,共需通话多少次?
⑤从10个同学中选出2名分别参加数学和物理竞赛,有多少中选派方法?
以上问题中,属于排列问题的是_________(填写问题序号).