- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 排列的意义理解
- + 排列数的计算
- 用排列数公式证明
- 排列数方程和不等式
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
高二全体师生今秋开学前在新校区体验周活动中有优异的表现,学校拟对高二年级进行表彰;
(1)若要表彰3个优秀班级,规定从6个文科班中选一个,14个理科班中选两个班级,有多少种不同的选法?
(2)年级组拟在选出的三个班级中再选5名学生,每班至少1名,最多2名,则不同的分配方案有多少种?
(3)选中的这5名学生和三位年级负责人徐主任,陈主任,付主任排成一排合影留念,规定这3位老师不排两端,且老师顺序固定不变,那么不同的站法有多少种?
(1)若要表彰3个优秀班级,规定从6个文科班中选一个,14个理科班中选两个班级,有多少种不同的选法?
(2)年级组拟在选出的三个班级中再选5名学生,每班至少1名,最多2名,则不同的分配方案有多少种?
(3)选中的这5名学生和三位年级负责人徐主任,陈主任,付主任排成一排合影留念,规定这3位老师不排两端,且老师顺序固定不变,那么不同的站法有多少种?
某工厂生产的10件产品中,有8件合格品、2件不合格品,合格品与不合格品在外观上没有区别.从这10件产品中任意抽检2件,计算:
(1)2件都是合格品的概率;
(2)1件是合格品、1件是不合格品的概率;
(3)如果抽检的2件产品都是不合格品,那么这批产品将被退货,求这批产品被退货的概率.
(1)2件都是合格品的概率;
(2)1件是合格品、1件是不合格品的概率;
(3)如果抽检的2件产品都是不合格品,那么这批产品将被退货,求这批产品被退货的概率.
《宋人扑枣图轴》是作于宋朝的中国古画,现收藏于中国台北故宫博物院.该作品简介:院角的枣树结实累累,小孩群来攀扯,枝桠不停晃动,粒粒枣子摇落满地,有的牵起衣角,有的捧着盘子拾取,又玩又吃,一片兴高采烈之情,跃然于绢素之上.甲、乙、丙、丁四人想根据该图编排一个舞蹈,舞蹈中他们要模仿该图中小孩扑枣的爬、扶、捡、顶四个动作,四人每人模仿一个动作.若他们采用抽签的方式来决定谁模仿哪个动作,则甲不模仿“爬”且乙不模仿“扶”的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
某城市在中心广场建造一个花圃,花圃分为6个部分.现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,则不同的栽种方法有______种.(用数字作答)

现有0、1、2、3、4、5、6、7、8、9共十个数字.
(1)可以组成多少个无重复数字的三位数?
(2)组成无重复数字的三位数中,315是从小到大排列的第几个数?
(3)可以组成多少个无重复数字的四位偶数?
(4)选出一个偶数和三个奇数,组成无重复数字的四位数,这样的四位数共有多少个?
(5)如果一个数各个数位上的数字从左到右按由大到小的顺序排列,则称此正整数为“渐减数”, 那么由这十个数字组成的所有“渐减数”共有多少个?
(1)可以组成多少个无重复数字的三位数?
(2)组成无重复数字的三位数中,315是从小到大排列的第几个数?
(3)可以组成多少个无重复数字的四位偶数?
(4)选出一个偶数和三个奇数,组成无重复数字的四位数,这样的四位数共有多少个?
(5)如果一个数各个数位上的数字从左到右按由大到小的顺序排列,则称此正整数为“渐减数”, 那么由这十个数字组成的所有“渐减数”共有多少个?