- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 加法原理与乘法原理
- + 排列
- 排列与排列数公式
- 排列应用题
- 组合
- 二项式定理
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
北京大兴国际机场是一座跨地域、超大型的国际航空综合交通枢纽,目前建有“三纵一横”4条跑道,分别叫西一跑道、西二跑道、东跑道、北跑道,如图所示.若有2架飞往不同目的地的飞机要从以上不同跑道同时起飞,有______________ 种不同的安排方法;若西一跑道、西二跑道至少有一条跑道被选取,有__________________ 种不同的安排方法.(用数字作答)

从1到9的九个数字中取三个偶数四个奇数,试问:
(1)能组成多少个没有重复数字的七位数?
(2)在(1)中的七位数中三个偶数排在一起的有几个?
(3)在(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个?
(4)在(1)中任意两偶然都不相邻的七位数有几个?
(答题要求:先列式,后计算 , 结果用具体数字表示.)
(1)能组成多少个没有重复数字的七位数?
(2)在(1)中的七位数中三个偶数排在一起的有几个?
(3)在(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个?
(4)在(1)中任意两偶然都不相邻的七位数有几个?
(答题要求:先列式,后计算 , 结果用具体数字表示.)
在高山滑雪运动的曲道赛项目中,运动员从高处(起点)向下滑,在滑行中运动员要穿过多个高约0.75米,宽4至6米的旗门,规定:运动员不经过任何一个旗门,都会被判一次“失格”,滑行时间会被增加,而所用时间越少,则排名越高.已知在参加比赛的运动员中,有五位运动员在滑行过程中都有三次“失格”,其中
(1)甲在滑行过程中依次没有经过
,
,
三个旗门;
(2)乙在滑行过程中依次没有经过
,
,
三个旗门;
(3)丙在滑行过程中依次没有经过
,
,
三个旗门;
(4)丁在滑行过程中依次没有经过
,
,
三个旗门;
(5)戊在滑行过程中依次没有经过
,
,
三个旗门.
根据以上信息,
,
,
,
,
,
,
,
这8个旗门从上至下的排列顺序共有( )种可能.
(1)甲在滑行过程中依次没有经过



(2)乙在滑行过程中依次没有经过



(3)丙在滑行过程中依次没有经过



(4)丁在滑行过程中依次没有经过



(5)戊在滑行过程中依次没有经过



根据以上信息,








A.6 | B.7 | C.8 | D.12 |
在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有
A.56个 | B.57个 | C.58个 | D.60个 |