- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 加法原理与乘法原理
- + 排列
- 排列与排列数公式
- 排列应用题
- 组合
- 二项式定理
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某餐厅并排有7个座位,甲、乙、丙三位顾客就餐,每人必须选择且只能选择一个座位,要求两端座位不能坐人,并且连续空座至多有2个,则不同的坐法有( )
A.24种 | B.36种 | C.48种 | D.56种 |
中国古代儒家提出的“六艺”指:礼、乐、射、御、书、数.某校国学社团预在周六开展“六艺”课程讲座活动,周六这天准备排课六节,每艺一节,排课有如下要求:“乐”与“书”不能相邻,“射”和“御”要相邻,则针对“六艺”课程讲座活动的不同排课顺序共有( )
A.18种 | B.36种 | C.72种 | D.144种 |
7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为()
A.120 | B.240 | C.360 | D.480 |
用0,1,2,3,4这五个数字,可以组成没有重复数字的:
(1)三位偶数有多少个?
(2)能被3整除的三位数有多少个?
(3)可以组成多少个比210大的三位数?
(1)三位偶数有多少个?
(2)能被3整除的三位数有多少个?
(3)可以组成多少个比210大的三位数?
六名同学站一排照相,要求
,
,
,三人按从左到右的顺序站,可以不相邻,也可以相邻,则不同的排法共有( )



A.720种 | B.360种 |
C.120种 | D.90种 |
育才中学运动会开赛以来最为精彩的4×100男女混合接力,经过激烈的角逐高三38班荣获第一名,赛后4位选手和2位裁判站成一排合影,若裁判不能站在一起,则不同的站法共有( )
A.60种 | B.120种 | C.240种 | D.480种 |
学校在周一至周五的5天中安排2天分别进行甲、乙两项不同的活动,若安排的2天不相邻且甲活动不能安排在周一,则不同的安排方式有______种.