- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 加法原理与乘法原理
- + 排列
- 排列与排列数公式
- 排列应用题
- 组合
- 二项式定理
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某组委会要从五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中甲不能从事翻译工作,乙不能从事导游工作,其余三人均能从事这四项工作,则不同的选派方案共有________种.
某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答).
记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()
A.1440种 | B.960种 | C.720种 | D.480种 |
对于正整数
,定义“
”如下:当
为偶数时,
;当
为奇数时,
;则:
①
;
②
;
③
的个位数是0;
④
的个位数是5;
上述命题中,正确的命题有( )






①

②

③

④

上述命题中,正确的命题有( )
A.1个 | B.2个 | C.3个 | D.4个 |
有红色、黄色小球各两个,蓝色小球一个,所有小球彼此不同,现将五球排成一行,颜色相同者不相邻,不同的排法共有( )种
A.48 | B.72 | C.78 | D.84 |
某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形
(边长为2个单位)的顶点
处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走了几个单位,如果掷出的点数为
,则棋子就按逆时针方向行走
个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到起点
处的所有不同走法共有( )







A.21种 | B.22种 | C.25种 | D.27种 |
有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地并排放到书架的同一层上,则问一科目的书都相邻的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |