- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 加法原理与乘法原理
- 分类加法计数原理
- 两个计数原理的综合应用
- 排列
- 组合
- 二项式定理
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
四大名著是中国文学史上的经典作品,是世界宝贵的文化遗产.在某学校举行的“文学名著阅读月”活动中,甲、乙、丙、丁、戊五名同学相约去学校图书室借阅四大名著《红楼梦》、《三国演义》、《水浒传》、《西游记》(每种名著至少有5本),若每人只借阅一本名著,则不同的借阅方案种数为( )
A.![]() | B.![]() | C.![]() | D.![]() |
如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法种数是( )


A.420 | B.210 | C.70 | D.35 |
将5个不同的小球放入3个不同的盒子,每个盒子至少1个球,至多2个球,则不同的放法种数有( )
A.30种 | B.90种 | C.180种 | D.270种 |
六安一中高三教学楼共五层,甲、乙、丙、丁四人走进该教学楼2~5层的某一层楼上课,则满足且仅有一人上5楼上课,且甲不在2楼上课的所有可能的情况有( )种
A.27 | B.81 | C.54 | D.108 |
某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?
某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有( )
A.36种 | B.42种 | C.48种 | D.54种 |
如图,平面
中有梯形
与梯形
分别在直线
的两侧,它们与
无公共点,并且关于
成轴对称,现将
沿
折成一个直二面角,则
,
,
,
,
,
,
,
八个点可以确定平面的个数是( )


















A.56 | B.44 | C.32 | D.16 |