- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 加法原理与乘法原理
- 分类加法计数原理
- 两个计数原理的综合应用
- 排列
- 组合
- 二项式定理
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.
(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?
(2)每名学生都被随机分配到其中的一个公园,设
分别表示5名学生分配到王城公园和牡丹公园的人数,记
,求随机变量
的分布列和数学期望
.
(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?
(2)每名学生都被随机分配到其中的一个公园,设




六名同学安排到 3 个社区 A,B,C 参加志愿者服务,每个社区安排两名同学,其中甲同学必须到 A社区,乙和丙同学均不能到 C 社区,则不同的安排方法种数为 ( )
A.12 | B.9 | C.6 | D.5 |
设东、西、南、北四面通往山顶的路各有2、3、3、4条路,只从一面上山,而从任意一面下山的走法最多,应
A.从东边上山 | B.从西边上山 | C.从南边上山 | D.从北边上山 |
大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个小孩的现象普遍存在,某城市关系要好的
四个家庭各有两个小孩共8人,准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中
户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有


A.![]() | B.![]() | C.![]() | D.![]() |
将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为()种.
A.240 | B.180 | C.150 | D.540 |
现有8名青年,其中5名能任英语翻译工作,4名能胜任电脑软件设计工作,且每人至少能胜这两项工作中的一项,现从中选5人,承担一项任务,其中3人从事英语翻译工作,2人从事软件设计工作,则不同的选派方法有
A.60种 | B.54种 |
C.30种 | D.42种 |
有7个灯泡排成一排,现要求至少点亮其中的3个灯泡,且相邻的灯泡不能同时点亮,则不同的点亮方法有( )
A.11种 | B.21种 | C.120种 | D.126种 |
某高中要从该校三个年级中各选取1名学生参加校外的一项知识问答活动,若高一、高二、高三年级分别有5,6,8个学生备选,则不同选法有( )
A.19种 | B.38种 | C.120种 | D.240种 |