- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 分层抽样的特征及适用条件
- + 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
周立波主持的《壹周·立波秀》节目以其独特的视角和犀利的语言,给观众留下了深刻的印象.央视鸡年春晚组为了了解观众对《壹周·立波秀》节目的喜爱程度,随机调查了观看了该节目的140名观众,得到如下2×2的列联表:(单位:名)
(Ⅰ)从这60名男观众中按对《壹周·立波秀》节目是否喜爱采取分层抽样,抽取一个容量为6的样本,问样本中喜爱与不喜爱的观众各有多少名?
(Ⅱ)根据以上列联表,问能否在犯错误的概率不超过0.025的前提下认为观众性别与喜爱
《壹周·立波秀》节目有关.(精确到0.001)
(Ⅲ)从(Ⅰ)中的6名男性观众中随机选取两名作跟踪调查,求选到的两名观众都喜爱
《壹周·立波秀》节目的概率.
附:临界值表
参考公式:
,
.
| 男 | 女 | 总计 |
喜爱 | 40 | 60 | 100 |
不喜爱 | 20 | 20 | 40 |
总计 | 60 | 80 | 140 |
(Ⅰ)从这60名男观众中按对《壹周·立波秀》节目是否喜爱采取分层抽样,抽取一个容量为6的样本,问样本中喜爱与不喜爱的观众各有多少名?
(Ⅱ)根据以上列联表,问能否在犯错误的概率不超过0.025的前提下认为观众性别与喜爱
《壹周·立波秀》节目有关.(精确到0.001)
(Ⅲ)从(Ⅰ)中的6名男性观众中随机选取两名作跟踪调查,求选到的两名观众都喜爱
《壹周·立波秀》节目的概率.
附:临界值表
![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
![]() | 2.705 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式:


某中学为调查在校学生的视力情况, 拟采用分层抽样的方法, 从该校三个年级中抽取一个容量为
的样本进行调查, 已知该校高一、高二、高三年级的学生人数之比为
,则应从高一年级学生抽取 名学生.


某校高中三个年级共有学生
名,各年级男生、女生的人数如下表:
已知在高中学生中随机抽取一名同学时,抽到高三年级女生的概率为
.
(Ⅰ)求
的值;
(Ⅱ)现用分层抽样的方法在全校抽取
名学生,则在高二年级应抽取多少名学生?
(Ⅲ)已知
,求高二年级男生比女生多的概率.

| 高一年级 | 高二年级 | 高三年级 |
男生 | ![]() | ![]() | ![]() |
女生 | ![]() | ![]() | ![]() |
已知在高中学生中随机抽取一名同学时,抽到高三年级女生的概率为

(Ⅰ)求

(Ⅱ)现用分层抽样的方法在全校抽取

(Ⅲ)已知

某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为_______.
某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则从高二年级抽取的学生人数为()
A.15 | B.20 | C.25 | D.30 |
某班级甲组有6名学生,其中有3名女生;乙组有6名学生,其中有2名女生.现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名学生进行社会实践活动.
(1)求从甲组抽取的学生中恰有1名女生的概率;
(2)求从乙组抽取的学生中至少有1名男生的概率;
(3)求抽取的4名学生中恰有2名女生的概率.
防疫站对学生进行身体健康调查,采用分层抽样法抽取,泗县一中高三有学生1600人,抽取一个容量为200的样本,已知女生比男生少抽10人,则该校的女生人数应该有 .
某单位共有36名员工,按年龄分为老年、中年、青年三组,其人数之比为3:2:1,现用分层抽样的方法从总体中抽取一个容量为12的样本,则青年组中甲、乙至少有一人被抽到的概率为()
A.![]() | B.![]() | C.![]() | D.![]() |
某学校对任课教师的年龄状况和接受教育程度(学历)做调研,其部分结果(人数分布)如表:
(1)用分层抽样的方法在35~50岁年龄段的教师中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1人的学历为研究生的概率;
(2)若按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取出1人,此人的年龄为50岁以上的概率为
,求x、y的值.
学历 | 35岁以下 | 35~50岁 | 50岁以上 |
本科 | 80 | 30 | 20 |
研究生 | x | 20 | y |
(1)用分层抽样的方法在35~50岁年龄段的教师中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1人的学历为研究生的概率;
(2)若按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取出1人,此人的年龄为50岁以上的概率为

某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人,如果在全校学生中抽取1名学生,抽到高二年级女生的概率为0.19,现采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于 .