- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 分层抽样的特征及适用条件
- + 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某单位员工按年龄分为A,B,C三组,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为20的样本,已知C组中甲、乙二人均被抽到的概率是
则该单位员工总数为

A.110 | B.100 | C.90 | D.80 |
某幼儿园从新入学的女童中,随机抽取50名,其身高(单位:
)的频率分布表如下:

(1)完成下列频率分布直方图;

(2)用分层抽样的方法从身高在
和
的女童中共抽取4人,其中身高在
的有几人?
(3)在(2)中抽取的4个女童中,任取2名,求身高在
和
中各有1人的概率.


(1)完成下列频率分布直方图;

(2)用分层抽样的方法从身高在



(3)在(2)中抽取的4个女童中,任取2名,求身高在


班主任为了对本班学生的考试成绩进行分析,决定从全班30位女同学,12位男同学中随机抽取一个容量为7的样本进行分析
(1)如果按性别比例分层抽样,男、女生抽取多少位才符合抽样要求?
(2)随机抽出7位,这7位同学的数学、物理成绩分数对应下表:

(i)若规定85分以上(包括85分)为优秀,在该班级随机调查一位同学,则该生的数学和物理分数均为优秀的概率是多少?
(ii)根据上表数据,用变量
与
的相关系数说明物理成绩
与数学成绩
之间线性相关关系的强弱.如果有较强的线性相关关系,求
与
的线性回归方程,并估测该班某位同学数学分数是95分时的物理成绩;如果不具有线性相关关系,说明理由.(系数精确到0.01)
参考公式:相关系数
;
对于相关系数
的大小,如果
,那么
与
负相关很强;如果
,那么
与
正相关很强;如果
或
,那么
与
相关性一般;如果
,那么
与
相关性较弱.
回归直线方程:
其中
参考数据:

(1)如果按性别比例分层抽样,男、女生抽取多少位才符合抽样要求?
(2)随机抽出7位,这7位同学的数学、物理成绩分数对应下表:

(i)若规定85分以上(包括85分)为优秀,在该班级随机调查一位同学,则该生的数学和物理分数均为优秀的概率是多少?
(ii)根据上表数据,用变量






参考公式:相关系数

对于相关系数














回归直线方程:


参考数据:


为了对某班学生的数学、物理成绩进行分析,从该班25位男同学,15位女同学中随机抽取一个容量为8的样本.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出算式,不必计算出结果);
(2)若这8人的数学成绩从小到大排序是:65,68,72,79,81,88,92,95.物理成绩从小到大排序是:72,77,80,84,86,90,93,98.
①求这8人中恰有3人数学、物理成绩均在85分以上的概率(结果用分数表示);
②已知随机抽取的8人的数学成绩和物理成绩如下表:
若以数学成绩为解释变量
,物理成绩为预报变量
,求
关于
的线性回归方程(系数精确到0.01);并求数学成绩对于物理成绩的贡献率(精确到0.01).
参考公式:相关系数
,
回归方程
,其中
参考数据:
,
(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出算式,不必计算出结果);
(2)若这8人的数学成绩从小到大排序是:65,68,72,79,81,88,92,95.物理成绩从小到大排序是:72,77,80,84,86,90,93,98.
①求这8人中恰有3人数学、物理成绩均在85分以上的概率(结果用分数表示);
②已知随机抽取的8人的数学成绩和物理成绩如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学成绩 | 65 | 68 | 72 | 79 | 81 | 88 | 92 | 95 |
物理成绩 | 72 | 77 | 80 | 84 | 86 | 90 | 93 | 98 |
若以数学成绩为解释变量




参考公式:相关系数

回归方程


参考数据:


某工厂有工人500名,记35岁以上(含35岁)的为
类工人,不足35岁的为
类工人,为调查该厂工人的个人文化素质状况,现用分层抽样的方法从
,
两类工人中分别抽取了40人、60人进行测试.
(1)求该工厂
,
两类工人各有多少人?
(2)经过测试,得到以下三个数据图表:


图一:75分以上
,
两类工人成绩的茎叶图(茎、叶分别是十位和个位上的数字)
①先填写频率分布表(表一)中的六个空格,然后将频率分布直方图(图二)补充完整;
②该厂拟定从参加考试的79分以上(含79分)的
类工人中随机抽取2人参加高级技工培训班,求抽到的2人分数都在80分以上的概率.




(1)求该工厂


(2)经过测试,得到以下三个数据图表:


图一:75分以上


①先填写频率分布表(表一)中的六个空格,然后将频率分布直方图(图二)补充完整;
②该厂拟定从参加考试的79分以上(含79分)的

用分层抽样的方式对某品牌同一批次两种型号的产品进行抽查,已知样本容量为
,其中有
件甲型号产品,乙型号产品总数为
,则该批次产品总数为 .



交通管理部门为了解机动车驾驶员(简称驾驶员)对酒驾的了解情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为
,其中甲社区有驾驶员216人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,24,43. 则这四社区驾驶员的总人数
为()


A.2160 | B.1860 | C.1800 | D.1440 |
据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3000人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06.
(1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流,求第一组中在校学生人数
的分布列和数学期望.
态度 调查人群 | 应该取消 | 应该保留 | 无所谓 |
在校学生 | 2100人 | 120人 | ![]() |
社会人士 | 500人 | ![]() | ![]() |
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06.
(1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流,求第一组中在校学生人数

一汽车厂生产A,B,C三类轿车,某月的产量如表(单位:辆):

按分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.

(Ⅰ)求
的值;
(Ⅱ)用分层抽样的方法在A,B类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆A类轿车的概率;
(Ⅲ)用随机抽样的方法从A,B两类轿车中各抽取4辆,进行综合指标评分,经检测它们的得分如图,比较哪类轿车综合评分比较稳定.

按分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.

(Ⅰ)求

(Ⅱ)用分层抽样的方法在A,B类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆A类轿车的概率;
(Ⅲ)用随机抽样的方法从A,B两类轿车中各抽取4辆,进行综合指标评分,经检测它们的得分如图,比较哪类轿车综合评分比较稳定.
某中学共有学生2000名,校卫生室为了解学生身体健康状况,对全校学生按性别采用分层抽样
的办法进行抽样调查,抽取了一个容量为200的样本,样本中男生107人,则该中学共有女生( )
的办法进行抽样调查,抽取了一个容量为200的样本,样本中男生107人,则该中学共有女生( )
A.1070人 | B.1030人 | C.930人 | D.970人 |