- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 系统抽样的特征及适用条件
- + 等距抽样的组距与编号
- 非等距的系统抽样问题
- 写出系统抽样过程
- 系统抽样的概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校用系统抽样的方法,从全校500名学生中抽取50名做问卷调查,现将500名学生编号为1,2,3,…,500,在1~10中随机抽地抽取一个号码,若抽到的是3号,则从11~20中应抽取的号码是( )
A.14 | B.13 | C.12 | D.11 |
将参加数学竞赛的1000名学生编号如下000,001,002,…,999,打算从中抽取一个容量为50的样本,按系统抽样方法分成50个部分,第一组编号为000,001,…,019,如果在第一组随机抽取的号码为015,则第30个号码为( )
A.595 | B.450 | C.600 | D.495 |
用系统抽样法从140名学生中抽取容量为20的样本,将140名学生从1~140编号.按编号顺序平均分成20组(1~7号,8~14号,…,134~140号),若第17组抽出的号码为117,则第一组中按此抽样方法确定的号码是( )
A.7 | B.5 | C.4 | D.3 |
为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分组数和分段的间隔分别为( )
A.50,20 | B.40,25 | C.25,40 | D.20,50 |
某学校从编号依次为001,002,…,180的180个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中一组的编号为23,相邻间距为15,则该样本中来自最后一组的学生的编号为( )
A.008 | B.170 | C.180 | D.173 |
要从已编号(
)的
个同学中随机抽取
人,调查其对学校某项新制度的意见,用系统抽样的方法确定所选取的
名学生的编号可能是( )




A.![]() ![]() ![]() ![]() ![]() | B.![]() ![]() ![]() ![]() ![]() |
C.![]() ![]() ![]() ![]() ![]() | D.![]() ![]() ![]() ![]() ![]() |
某单位有
名职工,现采用系统抽样方法从中抽取
人做问卷调查,将
人按
,
,
,
,
随机编号,若
号职工被抽到,则下列
名职工中未被抽到的是( )










A.![]() | B.![]() | C.![]() | D.![]() |
某位同学利用暑假期间准备搞一个社会实践调查,他打算从某小区内的120户居民中选出7户,他使用系统抽样的过程如下:
①编号:将120户居民从“1”到“120”随机地编号;
②决定间隔:因120被7除余1,故可先从总体中随机地剔除1个个体,再将余下的1 19个个体重新随机地编号为1到119号,最后设定间隔为17;
③随意使用一个起点,如38,然后推算出如下编号的居民为样本:38,55,72,89,106,123,140.
由于123和140并不在实际编号内,故他准备重新选取第一个号码,但他爸爸却说没有问题,爸爸的说法有错误吗?需要重新选取号码吗?你帮他解释一下.
①编号:将120户居民从“1”到“120”随机地编号;
②决定间隔:因120被7除余1,故可先从总体中随机地剔除1个个体,再将余下的1 19个个体重新随机地编号为1到119号,最后设定间隔为17;
③随意使用一个起点,如38,然后推算出如下编号的居民为样本:38,55,72,89,106,123,140.
由于123和140并不在实际编号内,故他准备重新选取第一个号码,但他爸爸却说没有问题,爸爸的说法有错误吗?需要重新选取号码吗?你帮他解释一下.
一个总体中有600个个体,随机编号为001,002,…,600,利用系统抽样方法抽取容量为25的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为049与120之间抽得的编号为( )
A.056,080,104 | B.054,078,102 |
C.054,079,104 | D.056,081,106 |
将参加数学夏令营的100名学生编号为001,002,…,100,现采用系统抽样方法抽取一个容量为25的样本,且第一段中随机抽得的号码为004,则在046号至078号中,被抽中的人数为________ .