- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个单位有职工500人,其中不到35岁的有125人,35岁至50岁的有280人,50岁以上的有95人.为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,应该怎样抽取?
在容量为100的总体中用随机数表法抽取5个样本,总体编号为
,给出下列几组号码:
①00,01,02,03,04;
②10,30,50,70,90;
③49,19,46,04,67;
④11,22,33,44,55.
则可能成为所得样本编号的是________(填相应序号).

①00,01,02,03,04;
②10,30,50,70,90;
③49,19,46,04,67;
④11,22,33,44,55.
则可能成为所得样本编号的是________(填相应序号).
某中学举行了为期3天的春季运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3000名初中生、4000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估,应如何抽取才能得到比较客观的评价结论?
你可能想了解全校同学生活、学习中的一些情况,例如,全校同学比较喜欢哪门课程,每月的零花钱平均是多少,喜欢看《新闻联播》的同学的比例是多少,每天大约什么时间起床,每天睡眠的平均时间是多少,等,选一些自己关心的问题,设计一份调查问卷,利用简单随机抽样方法调查你们学校同学的情况,并解释你所得到的结论.
有人说:“如果抽样方法设计得好,用样本进行视力调查与对24300名学生进行视力普查的结果差不多.而且对于想要掌握学生视力状况的教育部门来说,节省了人力、物力和财力,抽样调查更可取.”你认为这种说法有道理吗?为什么?
为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )
A.抽签法 | B.按性别分层随机抽样 | C.按学段分层随机抽样 | D.随机数法 |
已知总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5个数字开始,由左到右依次选取两个数字,写出选取的5个个体编号.
7816 | 6572 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
某单位有
三部门,其人数比例为3∶4∶5,现欲用分层抽样方法抽调n名志愿者支援西部大开发.若在
部门恰好选出了6名志愿者,那么n=________.


(本小题满分12分)最新高考改革方案已在上海和江苏开始实施,某教育机构为了解我省广大师生对新高考改革方案的看法,对某市部分学校500名师生进行调查,统计结果如下:

在全体师生中随机抽取1名“赞成改革”的人是学生的概率为0.3,且x=2y.
(Ⅰ)现从全部500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不
赞成改革”的教师和学生人数各是多少?
(Ⅱ)在(Ⅰ)中所抽取的“不赞成改革”的人中,随机选出三人进行座谈,求至少有一名
教师被选出的概率。

在全体师生中随机抽取1名“赞成改革”的人是学生的概率为0.3,且x=2y.
(Ⅰ)现从全部500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不
赞成改革”的教师和学生人数各是多少?
(Ⅱ)在(Ⅰ)中所抽取的“不赞成改革”的人中,随机选出三人进行座谈,求至少有一名
教师被选出的概率。
(本小题满分13分)某高中从学生体能测试结果中随机抽取100名学生的测试结果,按体重(单位:kg)分组,得到的频率分布表如右图所示.
(Ⅰ)请求出频率分布表中①、②位置相应的数据;
(Ⅱ)从第3、4、5组中用分层抽样抽取6名学生进行第二次测试,求第3、4、5组每组各抽取多少名学生进入第二次测试?
(Ⅲ)在(Ⅱ)的前提下,在6名学生中随机抽取2名学生由李老师进行测试,求第4组至少有一名学生被李老师测试的概率?
组号 | 分组 | 频数 | 频率 |
第1组 | [50,55) | 5 | 0.050 |
第2组 | [55,60) | ① | 0.350 |
第3组 | [60,65) | 30 | ② |
第4组 | [65,70) | 20 | 0.200 |
第5组 | [70,75] | 10 | 0.100 |
合计 | 100 | 1.000 |
(Ⅰ)请求出频率分布表中①、②位置相应的数据;
(Ⅱ)从第3、4、5组中用分层抽样抽取6名学生进行第二次测试,求第3、4、5组每组各抽取多少名学生进入第二次测试?
(Ⅲ)在(Ⅱ)的前提下,在6名学生中随机抽取2名学生由李老师进行测试,求第4组至少有一名学生被李老师测试的概率?