- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线的倾斜角与斜率
- 直线的方程
- + 直线的交点坐标与距离公式
- 相交直线的交点坐标
- 两点间的距离公式
- 点到直线的距离公式
- 两条平行线间的距离公式
- 直线综合
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知圆C:x2+y2-x+2y=0和直线l:x-y+1=0.
(1)试判断直线l与圆C之间的位置关系,并证明你的判断;
(2)求与圆C关于直线l对称的圆的方程.
(1)试判断直线l与圆C之间的位置关系,并证明你的判断;
(2)求与圆C关于直线l对称的圆的方程.
已知直线
经过点
,倾斜角
的正切值是
,圆
的极坐标方程为
(1)写出直线
的参数方程,并把圆
的方程化为直角坐标方程;
(2)求圆心
到直线
的距离.






(1)写出直线


(2)求圆心


著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:
可以转化为平面上点
与点
的距离.
结合上述观点,可得
的最小值为( )



结合上述观点,可得

A.![]() | B.![]() | C.![]() | D.![]() |