- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 已知两点求斜率
- 已知斜率求参数
- 斜率公式的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的上顶点与左、右焦点的连线构成面积为
的等边三角形.

(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过
的右焦点
作斜率为
的直线
与
交于
,
两点,直线
与
轴交于点
,
为线段
的中点,过点
作直线
于点
.证明:
,
,
三点共线.



(Ⅰ)求椭圆

(Ⅱ)过


















已知
为抛物线
的焦点,过
的动直线交抛物线
与
两点,当直线与
轴垂直时,
.
(1)求抛物线
的方程;
(2)设直线
的斜率为1且与抛物线的准线
相交于点
,抛物线
上存在点
使得直线
的斜率成等差数列,求点
的坐标.







(1)求抛物线

(2)设直线






