- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线的倾斜角
- + 斜率公式
- 已知两点求斜率
- 已知斜率求参数
- 斜率公式的应用
- 两条直线的到(夹)角公式
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的离心率为
,且点
在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知不经过
点的直线
与椭圆
交于
两点,
关于原点的对称点为
(与点
不重合),直线
与
轴分别交于两点
,证明:
.




(Ⅰ)求椭圆

(Ⅱ)已知不经过











已知
,
是双曲线
上关于原点对称的两点,点
是该双曲线上的任意一点.若直线
,
的斜率都存在,则
的值为定值.试类比上述双曲线的性质,得到椭圆
的一个类似性质为:设
,
是椭圆
上关于原点对称的两点,点
是椭圆上的任意一点.若直线
,
的斜率都存在,则
的值为定值,该定值为__________.














