- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 求组合多面体的表面积
- 求组合旋转体的表面积
- 形状相同的几何体表面积的比
- 根据表面积计算几何体的量
- 多面体与球体内切外接问题
- + 求组合体的体积
- 求旋转体的体积
- 形状相同的几何体体积的比
- 根据体积计算几何体的量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某几何体的三视图如图所示,其正视图和侧视图是全等的正三角形,其俯视图中,半圆的直径是等腰直角三角形的斜边,若半圆的直径为2,则该几何体的体积等于( )


A.![]() | B.![]() | C.![]() | D.![]() |
陀螺是汉族民间最早的娱乐工具之一,也称陀罗,闽南语称作“干乐”,北方叫做“冰尜”或“打老牛”.陀螺的主体形状一般是由上面部分的圆柱和下面部分的圆锥组成.从前的制作材料多为木头,现代多为塑料或铁制.玩耍时可用绳子缠绕,用力抽绳,使其直立旋转;或利用发条的弹力使其旋转.如图画出的是某陀螺模型的三视图,已知网格纸中小正方形的边长为1,则该陀螺模型的体积为( )


A.![]() | B.![]() | C.![]() | D.![]() |
中国古代数学名著《九章算术》中记载的叫邹傲的一个几何体,如图所示是邹傲的三视图(图中每个小正方形的边长到时1个单位),则该邹傲的体积为__________.
