- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 线性规划的可行解的概念及辨析
- 根据线性规划求最值或范围
- 根据最优解求参数
- + 线性规划问题的最优整数解问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为保增长、促发展,某地计划投资甲、乙两项目,市场调研得知,甲项目每投资百万元需要配套电能2万千瓦,可提供就业岗位24个,增加GDP260万元;乙项目每项投资百万元需要配套电能4万千瓦,可提供就业岗位32个,增加GDP200万元,已知该地为甲、乙两项目最多可投资3000万元,配套电能100万千瓦,并要求它们提供的就业岗位不少于800个,如何安排甲、乙两项目的投资额,增加的GDP最大?
某玩具厂计划每天生产A、B、C三种玩具共100个. 已知生产一个玩具A需5分钟,生产一个玩具B需7分钟,生产一个玩具C需4分钟,而且总生产时间不超过10个小时. 若每生产一个玩具A、B、C可获得的利润分别为5元、6元、3元.(I)用每天生产的玩具A的个数
与玩具B的个数
表示每天的利润
元;
(II)请你为玩具厂制定合理的生产任务分配计划,使每天的利润最大,并求最大利润.



(II)请你为玩具厂制定合理的生产任务分配计划,使每天的利润最大,并求最大利润.
学校有线网络同时提供A、B两套校本选修课程。A套选修课播40分钟,课后研讨20分钟,可获得学分5分B套选修课播32分钟,课后研讨40分钟,可获学分4分。全学期20周,网络每周开播两次,每次均为独立内容。学校规定学生每学期收看选修课不超过1400分钟,研讨时间不得少于1000分钟。两套选修课怎样合理选择,才能获得最好学分成绩?
某企业准备投资
万元兴办一所中学,对当地教育市场进行调查后,得到了如下的数据表格(以班级为单位):
第一年因生源和环境等因素,全校总班级至少
个,至多
个,若每开设一个初、高中班,可分别获得年利润
万元、
万元,则第一年利润最大为

| ![]() | ![]() |
初中 | 26 | 4 |
高中 | 54 | 6 |
第一年因生源和环境等因素,全校总班级至少





A.![]() | B.![]() | C.![]() | D.![]() |
某运输队接到给灾区运送物资的任务,该运输队有8辆载重为
的
型卡车,6辆载重为
的
型卡车,10名驾驶员,要求此运输队每天至少运送
救灾物资.已知每辆卡车每天往返的次数为
型卡车16次,
型卡车12次.每辆卡车每天往返的成本为
型卡车240元,
型卡车378元.问每天派出
型卡车与
型卡车各多少辆,运输队所花的成本最低?










