- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 分式不等式
- 高次不等式
- + 抽象不等式
- 根式不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知p:方程2x2-2mx+1=0有两个不相等的负实根;q:存在x∈R,
x2+mx+1<0.若p或q为真,p且q为假,求实数m的取值范围.
x2+mx+1<0.若p或q为真,p且q为假,求实数m的取值范围.
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R).
(1)设n≥2,b=1,c=-1,证明:fn(x)在区间
内存在唯一零点;
(2)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范围;
(3)在(1)的条件下,设xn是fn(x)在
内的零点,判断数列x2,x3,…,xn,…的增减性.
(1)设n≥2,b=1,c=-1,证明:fn(x)在区间

(2)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范围;
(3)在(1)的条件下,设xn是fn(x)在

已知函数
.
(1)求
的单调区间和极值点;
(2)求使
恒成立的实数
的取值范围;
(3)当
时,是否存在实数
,使得方程
有三个不等实根?若存在,求出
的取值范围;若不存在,请说明理由.

(1)求

(2)求使


(3)当



