- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 不等式的性质
- + 一元二次不等式
- 一元二次不等式的解法
- 一元二次不等式恒成立问题
- 一元二次不等式的应用
- 其他不等式
- 线性规划
- 基本不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有纯农药液一桶,倒出8升后用水补满,然后又倒出4升后再用水补满,此时桶中的农药不超过容积的28%,则桶的容积的取值范围是________.
某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增
,八月份销售额比七月份递增
,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,试求
的最小值.



为鼓励大学毕业生自主创业,某市出台了相关政策:由政府协调,企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.某大学毕业生按照相关政策投资销售一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月的销售量y(单位:件)与销售单价x(单位:元)之间的关系近似满足一次函数:
.
(1)设他每月获得的利润为w(单位:元),写出他每月获得的利润w与销售单价x的函数关系.
(2)相关部门规定,这种节能灯的销售单价不得高于25元.如果他想要每月获得的利润不少于3000元,那么政府每个月为他承担的总差价的取值范围是多少?

(1)设他每月获得的利润为w(单位:元),写出他每月获得的利润w与销售单价x的函数关系.
(2)相关部门规定,这种节能灯的销售单价不得高于25元.如果他想要每月获得的利润不少于3000元,那么政府每个月为他承担的总差价的取值范围是多少?
某小型服装厂生产一种风衣,日销售量
(件)与单价
(元)之间的关系为
,生产
件所需成本为
(元),其中
元,若要求每天获利不少于1300元,则日销售量
的取值范围是( ).







A.![]() | B.![]() |
C.![]() | D.![]() |
若关于x的不等式x2–ax+2<0在区间[1,2]上有解,则实数a的取值范围为
A.(–∞,![]() | B.(–∞,1) |
C.(1,+∞) | D.(![]() |