- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 由已知条件判断所给不等式是否正确
- 由不等式的性质比较数(式)大小
- + 作差法比较不等式的大小
- 作商法比较不等式的大小
- 由不等式的性质证明不等式
- 利用不等式求值或取值范围
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对在直角坐标系的第一象限内的任意两点
,
作如下定义:
,那么称点
是点
的“上位点”,同时点
是点
的“下位点”.
(1)试写出点
的一个“上位点”坐标和一个“下位点”坐标;
(2)设
、
、
、
均为正数,且点
是点
的上位点,请判断点
是否既是点
的“下位点”又是点
的“上位点”,如果是请证明,如果不是请说明理由;
(3)设正整数
满足以下条件:对任意实数
,总存在
,使得点
既是点
的“下位点”,又是点
的“上位点”,求正整数
的最小值.







(1)试写出点

(2)设









(3)设正整数






