- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- + 数量积的坐标表示
- 向量模的坐标表示
- 坐标计算向量的模
- 向量垂直的坐标表示
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,梯形
中,
,
,
,
,
和
分别为
与
的中点,对于常数
,在梯形
的四条边上恰好有8个不同的点
,使得
成立,则实数
的取值范围是( )
















A.![]() | B.![]() |
C.![]() | D.![]() |
已知点M是边长为2的正方形ABCD的内切圆内(含边界)一动点,则
的取值范围是( )

A.[-1,0] | B.[-1,2] | C.[-1,3] | D.[-1,4] |