- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- + 数量积的坐标表示
- 向量模的坐标表示
- 坐标计算向量的模
- 向量垂直的坐标表示
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知两空间向量
(2,cos θ,sin θ),
(sin θ,2,cos θ),则
与
的夹角为( )




A.30° | B.45° | C.60° | D.90° |
已知点A(-1,0),B(1,-1)和抛物线.
,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)证明:
为定值;
(2)若△POM的面积为
,求向量
与
的夹角;
(3)证明直线PQ恒过一个定点.

(1)证明:

(2)若△POM的面积为



(3)证明直线PQ恒过一个定点.
