- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 三角函数
- 三角恒等变换
- + 解三角形
- 正弦定理和余弦定理
- 解三角形的实际应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
为正实数,
,
,
.
(Ⅰ)如果
,则是否存在以
为三边长的三角形?请说明理由;
(Ⅱ)对任意的正实数
,试探索当存在以
为三边长的三角形时
的取值范围.




(Ⅰ)如果


(Ⅱ)对任意的正实数



在海岛A上有一座海拔1千米的山,山顶上有一个观察站P,上午11时,测得一轮船在岛的北偏东30°,俯角30°的B处,到11时10分又测得该船在岛的北偏西60°,俯角60°的C处,则轮船航行速度是 千米/小时.
如图,为了计算北江岸边两景点
与
的距离,由于地形的限制,需要在岸上选取
和
两个测量点,现测得
,
,
,
,
,求两景点
与
的距离(假设
在同一平面内,测量结果保留整数;参考数据:
)













