- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦函数的图象
- 余弦函数的图象
- + 正弦函数的单调性
- 求sinx的函数的单调性
- 利用正弦函数的单调性求参数
- 比较正弦值的大小
- 解正弦不等式
- 正弦函数的定义域、值域和最值
- 正弦函数的奇偶性
- 正弦函数的周期性
- 正弦函数的对称性
- 余弦函数的单调性
- 余弦函数的定义域、值域和最值
- 余弦函数的奇偶性
- 余弦函数的周期性
- 余弦函数的对称性
- 正切函数的图象
- 正切函数的单调性
- 正切函数的奇偶性
- 正切函数的周期性
- 正切函数的对称性
- 正切函数的定义域、值域和最值
- 正(余)弦型三角函数的图象
- 正切型三角函数的图象
- 三角函数图象的综合应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知在函数f (x)=Asin(ωx+φ)( A>0,ω>0)的图象上,距离y轴最近的极大值点为x=-
,距离坐标原点最近的一个零点为x=
,则f (x)的单调递增区间为


A.(2kπ-![]() ![]() | B.(2k-![]() ![]() |
C.(2kπ+![]() ![]() | D.(2k+![]() ![]() |
已知
为坐标原点,
,
,
,若
.
⑴ 求函数
的最小正周期和单调递增区间;
⑵ 将函数
的图象上各点的横坐标伸长为原来的
倍(纵坐标不变),再将得到的图象向左平移
个单位,得到函数
的图象,求函数
在
上的最小值.





⑴ 求函数

⑵ 将函数






已知函数f(x)=Asin(ωx+φ)(x∈R)(其中A>0,ω>0,0<φ<
)的周期为π,且图象上一个最低点为M(
,﹣2)
(1)求f(x)的解析式
(2)求f(x)的单调增区间.


(1)求f(x)的解析式
(2)求f(x)的单调增区间.