- 集合与常用逻辑用语
- 函数与导数
- 定积分的概念
- 微积分基本定理
- + 定积分的简单应用
- 定积分在几何中的应用
- 定积分在物理中的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,设
,
是某抛物线上相异两点,将抛物线在
,
之间的弧线与线段
围成的区域记为
;弧线
上取一点
,使抛物线在
点处的切线与线段
平行,则三角形
内部记为区域
.古希腊伟大的哲学家、数学家、物理学家阿基米德在公元前3世纪,巧妙地证明了
与
两区域的面积之比为常数,并求出了该常数的值.以抛物线
上两点
,
之间的弧线为特例,探求该常数的值,并计算:向区域
内任意投掷一点,则该点落在
内的概率是( )





















A.![]() | B.![]() | C.![]() | D.![]() |
一物体在力F(x)=
(单位:N)的作用下沿与F(x)相同的方向,从x=0处运动到x=4(单位:m)处,则力F(x)做的功为____ J.
