- 集合与常用逻辑用语
- 函数与导数
- 利用微积分基本定理求定积分
- + 微积分基本定理的应用
- 已知定积分求参数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
抛物线y2=x与直线x-2y-3=0的两个交点分别为P、Q,点M在抛物线上从P向Q运动(点M不同于点P、Q),
(Ⅰ)求由抛物线y2=x与直线x-2y-3=0所围成的封闭图形面积;
(Ⅱ)求使⊿MPQ的面积为最大时M点的坐标。
(Ⅰ)求由抛物线y2=x与直线x-2y-3=0所围成的封闭图形面积;
(Ⅱ)求使⊿MPQ的面积为最大时M点的坐标。
过原点的直线l与抛物线y=x2-2ax(a>0)所围成的图形面积为
a3,则直线l的方程为( )

A.y=±ax | B.y=ax |
C.y=-ax | D.y=-5ax |
已知函数f(x)满足f(0)=0,导函数f′(x)的图象如图所示,则f(x)的图象与x轴围成的封闭图形的面积为( )


A.![]() | B.![]() |
C.2 | D.![]() |