- 集合与常用逻辑用语
- 函数与导数
- + 导数的概念和几何意义
- 平均变化率
- 导数的几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=-x2+2x,函数f(x)从2到2+Δx的平均变化率为( )
A.2-Δx | B.-2-Δx |
C.2+Δx | D.(Δx)2-2·Δx |
f(x)在x=x0处可导,则
( )

A.与x0,Δx有关 |
B.仅与x0有关,而与Δx无关 |
C.仅与Δx有关,而与x0无关 |
D.与x0,Δx均无关 |
一作直线运动的物体,其位移s与时间t的关系是s(t)=3t-t2(s的单位是:m,t的单位是:s).
(1)求此物体的初速度;
(2)求此物体在t=2 s时的瞬时速度;
(3)求t=0 s到t=2 s时的平均速度.
(1)求此物体的初速度;
(2)求此物体在t=2 s时的瞬时速度;
(3)求t=0 s到t=2 s时的平均速度.